Solveeit Logo

Question

Question: If \(G(x) = - \sqrt{25 - x^{2}}\), then ( \lim_{x \rightarrow 1}\frac{G(x) - G(1)}{x - 1} ) equals...

If G(x)=25x2G(x) = - \sqrt{25 - x^{2}}, then ( \lim_{x \rightarrow 1}\frac{G(x) - G(1)}{x - 1} ) equals

A

1/24

B

1/5

C

24- \sqrt{24}

D

None of these

Answer

None of these

Explanation

Solution

limx1G(x)G(1)x1=limx125x2+24x1\lim_{x \rightarrow 1}\frac{G(x) - G(1)}{x - 1} = \lim_{x \rightarrow 1}\frac{- \sqrt{25 - x^{2}} + \sqrt{24}}{x - 1}

[Multiply both numerator and denominator by

(24+25x2\sqrt{24} + \sqrt{25 - x^{2}})]

=limx1x+124+25x2=124= \lim_{x \rightarrow 1}\frac{x + 1}{\sqrt{24} + \sqrt{25 - x^{2}}} = \frac{1}{\sqrt{24}}

Alternative method: By L'-Hospital rule,

limx1G(x)1=limx11(2x)225x2=124\lim_{x \rightarrow 1}\frac{G^{'}(x)}{1} = \lim_{x \rightarrow 1}\frac{- 1( - 2x)}{2\sqrt{25 - x^{2}}} = \frac{1}{\sqrt{24}}