Solveeit Logo

Question

Question: If \(g:R \rightarrow R,\) , ∀ n ≥ 1 then \(g(x) = x^{2}(gof)(x)\) is equal to...

If g:RR,g:R \rightarrow R, , ∀ n ≥ 1 then g(x)=x2(gof)(x)g(x) = x^{2}(gof)(x) is equal to

A

3

B

3/2

C

¾

D

3/8

Answer

3/8

Explanation

Solution

= 2(3n – 1)

⇒ t1 + t2 + …..+ tn = 2(3n – 1)

We can do tn = Sn – Sn–1

⇒ tn = 2(3n –1) – 2(3n–1 – 1)

= 2[3n – 3n–1] = 4.3n–1 Now,

=14\frac { 1 } { 4 }. =14\frac { 1 } { 4 }. 1(113)\frac { 1 } { \left( 1 - \frac { 1 } { 3 } \right) } =38\frac { 3 } { 8 }