Solveeit Logo

Question

Question: If given a trigonometric equation\(\sqrt 3 \tan \theta = 3\sin \theta \), find the value of \({\sin ...

If given a trigonometric equation3tanθ=3sinθ\sqrt 3 \tan \theta = 3\sin \theta , find the value of sin2θcos2θ{\sin ^2}\theta - {\cos ^2}\theta

Explanation

Solution

Hint: - Use the trigonometric identities and Pythagoras theorem.

Given:3tanθ=3sinθ\sqrt 3 \tan \theta = 3\sin \theta
tanθ=33sinθ tanθ=3sinθ tanθsinθ=3 cosθ=13 cosθ=Adjacent sideHypotenuse=BH=13  \Rightarrow \tan \theta = \dfrac{3}{{\sqrt 3 }}\sin \theta \\\ \Rightarrow \tan \theta = \sqrt 3 \sin \theta \\\ \Rightarrow \dfrac{{\tan \theta }}{{\sin \theta }} = \sqrt 3 \\\ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt 3 }} \\\ \Rightarrow \cos \theta = \dfrac{{Adjacent{\text{ }}side}}{{Hypotenuse}} = \dfrac{B}{H} = \dfrac{1}{{\sqrt 3 }} \\\

From the above figure for the Right angled triangle by using Pythagoras Theorem,
H2=P2+B2 (3)2=P2+12 P2=31 P2=2 P=2  {H^2} = {P^2} + {B^2} \\\ {\left( {\sqrt 3 } \right)^2} = {P^2} + {1^2} \\\ {P^2} = 3 - 1 \\\ {P^2} = 2 \\\ P = \sqrt 2 \\\
Now, sin2θcos2θ=(PH)2(BH)2{\sin ^2}\theta - {\cos ^2}\theta = {\left( {\dfrac{P}{H}} \right)^2} - {\left( {\dfrac{B}{H}} \right)^2}
=(23)2(13)2 =2313 =13  = {\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right)^2} - {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} \\\ = \dfrac{2}{3} - \dfrac{1}{3} \\\ = \dfrac{1}{3} \\\
Note: The above question can be solved by using trigonometric identities, but here it is done by visualizing the terms in the form of sides of the right angled triangle, thus making the problem easier to solve.