Solveeit Logo

Question

Mathematics Question on Probability

If getting a number greater than 44 is a success in a throw of a fair die, then the probability of at least 22 successes in six throws of a fair die is

A

0.6490.649

B

0.3510.351

C

0.2670.267

D

0.6670.667

Answer

0.6490.649

Explanation

Solution

p = P (success) = P (getting number greater than 4)
=P(5,6)=P(5,\,6)
=26=13=\frac{2}{6}=\frac{1}{3}
\therefore q=P(failure)=1Pq=P(failure)=1-P
=113=23=1-\frac{1}{3}=\frac{2}{3}
By Binomial distribution P(X=r)=nCrprqnrP(X=r){{=}^{n}}{{C}_{r}}{{p}^{r}}{{q}^{n-r}} P (probability of atleast 2 successes)
=1P(X=0,1)=1-P(X=0,1)
=1(P(0)+P(1)=1-\\{(P(0)+P(1)\\}
=16C0p0q6+6C1p1q5=1-{{\\{}^{6}}{{C}_{0}}{{p}^{0}}{{q}^{6}}{{+}^{6}}{{C}_{1}}{{p}^{1}}{{q}^{5}}\\}
=1-\left\\{ 1{{\left( \frac{1}{3} \right)}^{0}}{{\left( \frac{2}{3} \right)}^{6}}+6\times \left( \frac{1}{3} \right).{{\left( \frac{2}{3} \right)}^{5}} \right\\}
=1[(13)0×2636+2×2535]=1-\left[ {{\left( \frac{1}{3} \right)}^{0}}\times \frac{{{2}^{6}}}{{{3}^{6}}}+2\times \frac{{{2}^{5}}}{{{3}^{5}}} \right]
=1[64729+2×32243]=1[192+64729]=1-\left[ \frac{64}{729}+\frac{2\times 32}{243} \right]=1-\left[ \frac{192+64}{729} \right]
=1256729=10.35=0.649=1-\frac{256}{729}=1-0.35=0.649