Solveeit Logo

Question

Mathematics Question on limits and derivatives

If G(x)=25x2G(x) = - \sqrt{25 - x^2} then limx1G(x)G(1)x1\displaystyle \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} has the value

A

124\frac{1}{24}

B

15\frac{1}{5}

C

24 - \sqrt{24}

D

none of these

Answer

none of these

Explanation

Solution

limx125x2(24)x1\displaystyle\lim_{x \to1} \frac{- \sqrt{25-x^{2}} - \left(-\sqrt{24}\right)}{x-1}
=limx12425x2x1×24+25x224+25x2= \displaystyle\lim_{x \to1} \frac{\sqrt{24} - \sqrt{25-x^{2}}}{x-1} \times\frac{\sqrt{24} + \sqrt{25-x^{2}}}{\sqrt{24} + \sqrt{25-x^{2}}}
=limx1x21(x1)[24+25x2]= \displaystyle\lim_{x \to1} \frac{x^{2} - 1}{\left(x-1\right) \left[\sqrt{24} + \sqrt{25 -x^{2}}\right]}
=limx1x+1[24+25x2]= \displaystyle\lim_{x \to1} \frac{x+1}{ \left[\sqrt{24} + \sqrt{25-x^{2}}\right]}
=2224=126= \frac{2}{2\sqrt{24}} = \frac{1}{2\sqrt{6}}