Question
Mathematics Question on Limits
If g (x) is a polynomial satisfying g (x) g(y) = g(x) + g(y) + g(xy) - 2 for all real x and y and g (2) = 5 then \underset{\text{x \rightarrow 3}}{{Lt }} g(x)is
9
10
25
20
10
Solution
g (x). g(y) = g(x) + g (y) + g (x y) - 2 ...(1)
Put x = 1, y = 2, then
g (1). g(2) = g (1) + g (2) + g (2) - 2
5g (1) = g (1) + 5 + 5 - 2
4g (1) = 8 ∴ g(1) = 2
Put y =x1 in equation (1) , we get
g(x).g (x1) =g(x) +g(x1) g(1) -2
g(x).g (x1) =g(x) +g +2 -2
[∴ g(1) = 2 ]
This is valid only for the polynomial
∴ g (x) = 1 ± xn ... (2)
Now g (2) = 5 (Given)
∴ 1 ±2n = 5 [Using equation (2)]
±2n = 4, ⇒ 2n = 4, -4
Since the value of 2n cannot be -Ve.
So, 2n = 4, ⇒ n = 2
Now, put n = 2 in equation (2), we get
g (x) = 1 + x2
∴ \underset{\text{x \rightarrow 3}}{{Lt }} g(x) = \underset{\text{x \rightarrow 3}}{{Lt }} (1±x2) =1±(3)2
=1±9 = 10, - 8