Solveeit Logo

Question

Mathematics Question on Limits

If g (x) is a polynomial satisfying g (x) g(y) = g(x) + g(y) + g(xy) - 2 for all real x and y and g (2) = 5 then \underset{\text{x \rightarrow 3}}{{Lt }} g(x)is

A

9

B

10

C

25

D

20

Answer

10

Explanation

Solution

g (x). g(y) = g(x) + g (y) + g (x y) - 2 ...(1)
Put x = 1, y = 2, then
g (1). g(2) = g (1) + g (2) + g (2) - 2
5g (1) = g (1) + 5 + 5 - 2
4g (1) = 8 \quad \quad \therefore g(1) = 2
Put y =1x\frac{1}{x} in equation (1) , we get
g(x).g (1x)\left(\frac{1}{x}\right) =g(x) +g(1x)\left(\frac{1}{x}\right) g(1) -2
g(x).g (1x)\left(\frac{1}{x}\right) =g(x) +g +2 -2
\quad \quad \quad \quad \quad \quad[\therefore g(1) = 2 ]
This is valid only for the polynomial
\therefore \quad \quadg (x) = 1 ±\pm xn^n \quad \quad ... (2)
Now g (2) = 5\quad \quad \quad \quad(Given)
\therefore 1 ±\pm2n = 5\quad \quad[Using equation (2)]
\quad \quad \quad \quad ±\pm2n^n = 4, \Rightarrow 2n^n = 4, -4
Since the value of 2n^n cannot be -Ve.
So, 2n^n = 4, \Rightarrow n = 2
Now, put n = 2 in equation (2), we get
g (x) = 1 + x2^2
\therefore \underset{\text{x \rightarrow 3}}{{Lt }} g(x) = \underset{\text{x \rightarrow 3}}{{Lt }} (1±\pmx2^2) =1±\pm(3)2^2
\quad \quad \quad \quad=1±\pm9 = 10, - 8