Question
Mathematics Question on solution of system of linear inequalities in two variables
If g(x) is a polynomial satisfying g(x)g(y)=g(x)+g(y)+g(xy)−2 for all real x and y and g(2)=5 then \Ltx→3g(x) is
A
9
B
10
C
25
D
20
Answer
10
Explanation
Solution
g(x).g(y)=g(x)+g(y)+g(xy)−2 ........(1) Put x=1,y=2, then g(1).g(2)=g(1)+g(2)+g(2)−2 5g(1)=g(1)+5+5−2 4g(1)=8 ∴g(1)=2 Put y=x1 in equation (1) , we get g(x).g(x1)=g(x)+g(x1)+g(1)−2 g(x).g(x1)=g(x)+g(x1)+2−2 \hspace50mm [\because \, g(1) = 2 ] This is valid only for the polynomial ∴g(x)=1±xn ....(2) Now g(2)=5 (Given) ∴1±2n=5 [Using equation (2)] ±2n=4,⇒2n=4,−4 Since the value of 2n cannot be -Ve. So, 2n=4,⇒n=2 Now, put n = 2 in equation (2), we get g(x)=1±x2 Ltx→3g(x)=Ltx→3(1±x2)=1±(3)2 =1±9=10,−8