Solveeit Logo

Question

Mathematics Question on solution of system of linear inequalities in two variables

If g(x)g(x) is a polynomial satisfying g(x)g(y)=g(x)+g(y)+g(xy)2g (x) g(y) = g(x) + g(y) + g(xy) - 2 for all real xx and yy and g(2)=5g (2) = 5 then \Ltx3g(x)\Lt_{x \to 3} g(x) is

A

9

B

10

C

25

D

20

Answer

10

Explanation

Solution

g(x).g(y)=g(x)+g(y)+g(xy)2g (x). g(y) = g(x) + g (y) + g (x y) - 2 ........(1) Put x=1,y=2,x = 1 , y = 2, then g(1).g(2)=g(1)+g(2)+g(2)2g (1). g(2) = g (1) + g (2) + g (2) - 2 5g(1)=g(1)+5+525g (1) = g (1) + 5 + 5 - 2 4g(1)=84g (1) = 8 g(1)=2\therefore \, \, g(1) = 2 Put y=1xy = \frac{1}{x} in equation (1) , we get g(x).g(1x)=g(x)+g(1x)+g(1)2g\left(x\right).g\left(\frac{1}{x}\right) = g\left(x\right) + g\left(\frac{1}{x}\right) + g\left(1\right) - 2 g(x).g(1x)=g(x)+g(1x)+22g\left(x\right).g\left(\frac{1}{x}\right) = g\left(x\right) + g\left(\frac{1}{x}\right) + 2-2 \hspace50mm [\because \, g(1) = 2 ] This is valid only for the polynomial g(x)=1±xn \therefore \, \, g(x) = 1 \pm x^n ....(2) Now g(2)=5g(2) = 5 (Given) 1±2n=5\therefore \, \, 1 \pm 2^n = 5 [Using equation (2)] ±2n=4,2n=4,4\pm 2^n = 4 , \Rightarrow \, 2^n = 4 , - 4 Since the value of 2n cannot be -Ve. So, 2n=4,n=22^n = 4 , \Rightarrow \, n = 2 Now, put n = 2 in equation (2), we get g(x)=1±x2g(x) = 1 \pm x^2 Ltx3g(x)=Ltx3(1±x2)=1±(3)2Lt_{x \to 3} g(x) = Lt_{x \to 3} ( 1 \pm x^2) = 1 \pm (3) ^2 =1±9=10,8= 1 \pm 9 = 10, -8