Solveeit Logo

Question

Engineering Mathematics Question on Definite and indefinite integrals

If g(x)g(x) is a continuous function such thatabg(x)dx=β\int_{a}^{b} g(x) \, dx = \betathen the correct statement(s), amongst the following, is/are:

A

a+1b+1g(x1)dx=β\int_{a+1}^{b+1} g(x-1) \, dx = \beta

B

1a21b22g(12x)dx=β\int_{\frac{1-a}{2}}^{\frac{1-b}{2}} 2g(1-2x) \, dx = \beta

C

0bag(x+a)dx=β\int_{0}^{b-a} g(x+a) \, dx = \beta

D

0abg(ax)dx=β\int_{0}^{a-b} g(a-x) \, dx = \beta

Answer

a+1b+1g(x1)dx=β\int_{a+1}^{b+1} g(x-1) \, dx = \beta

Explanation

Solution

The correct option is (A): a+1b+1g(x1)dx=β\int_{a+1}^{b+1} g(x-1) \, dx = \beta,(C):0bag(x+a)dx=β\int_{0}^{b-a} g(x+a) \, dx = \beta