Solveeit Logo

Question

Mathematics Question on Relations and functions

If g(x)=1+xg(x) = 1 + \sqrt{x} and f[g(x)]=3+2x+xf [g (x)] = 3 + \sqrt{2} x + x , then f(x) =

A

1+2x21 + 2x^2

B

2+x22 + x^2

C

1+x1 + x

D

2+x2 + x

Answer

2+x22 + x^2

Explanation

Solution

We have, g(x)=1+xg (x) =1+ \sqrt {x} and f[g(x)]=3+2x+xf [g (x)] = 3+ 2 \sqrt{x} + x ..(i) Also, f[g(x)]=f(1+x)f [g(x)] = f (1+ \sqrt{x}) ...(ii) By (i) and (ii), we get f(1+x)=3+2x+xf (1+ \sqrt{x}) = 3 + 2 \sqrt{x} + x Let 1+x=y1+ \sqrt{x} = y or x=(y1)2x = (y - 1)^2. f(y)=3+2(y1)+(y1)2\therefore \, \, f (y) = 3 + 2 (y - 1) + (y - 1)^2. =3+2y2+y22y+1=2+y2= 3 + 2y - 2 + y^2 - 2y + 1 = 2 + y^2 f(x)=2+x2\therefore \, f (x) = 2 + x^2