Solveeit Logo

Question

Question: If \(G\left( {3, - 5,r} \right)\) is centroid of triangle ABC where \(A\left( {7, - 8,1} \right),B\l...

If G(3,5,r)G\left( {3, - 5,r} \right) is centroid of triangle ABC where A(7,8,1),B(p,q,5)A\left( {7, - 8,1} \right),B\left( {p,q,5} \right) and C(q+1,5p,0)C\left( {q + 1,5p,0} \right) are vertices of a triangle then values of p,q,rp,q,r are respectively.
A. 6,5,46,5,4
B. 4,5,4 - 4,5,4
C. 3,4,3 - 3,4,3
D. 2,3,2 - 2,3,2

Explanation

Solution

We will use the formula of centroid, that is, if (x1,y1,z1),(x2,y2,z2),(x3,y3,z3)\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right),\left( {{x_3},{y_3},{z_3}} \right) are the coordinates of vertices of a triangle, then the coordinates of centre are given by (x1+x2+x33,y1+y2+y33,z1+z2+z33)\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right). Substitute the given values of centroid and vertices of a triangle. Next, compare the coordinates to determine the value of p,q,rp, q, r.

Complete step by step solution:
We are given that GG is the centroid of the triangle, whose vertices are A,BA,B and CC.
A centroid is a point of intersection of three medians of a triangle.
Also, we know that if (x1,y1,z1),(x2,y2,z2),(x3,y3,z3)\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right),\left( {{x_3},{y_3},{z_3}} \right) are the coordinates of vertices of a triangle, then the coordinates of centre are given by (x1+x2+x33,y1+y2+y33,z1+z2+z33)\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right)
Then, from the given conditions, we will have,
(3,5,r)=(7+p+q+13,8+q+5p3,1+5+03) (3,5,r)=(8+p+q3,8+q+5p3,2) \left( {3, - 5,r} \right) = \left( {\dfrac{{7 + p + q + 1}}{3},\dfrac{{ - 8 + q + 5p}}{3},\dfrac{{1 + 5 + 0}}{3}} \right) \\\ \Rightarrow \left( {3, - 5,r} \right) = \left( {\dfrac{{8 + p + q}}{3},\dfrac{{ - 8 + q + 5p}}{3},2} \right)
Now, we will compare the coordinates and form respective equations.
On comparing the xx coordinates, we will get,
3=8+p+q3 9=8+p+q 3 = \dfrac{{8 + p + q}}{3} \\\ \Rightarrow 9 = 8 + p + q
p+q=1\Rightarrow p + q = 1 eqn. (1)
On comparing the yy coordinates, we will get,
\-5=8+q+5p3 15=8+q+5p \- 5 = \dfrac{{ - 8 + q + 5p}}{3} \\\ \Rightarrow - 15 = - 8 + q + 5p
5p+q=7\Rightarrow 5p + q = - 7 eqn. (2)
On comparing the zz coordinates, we will get,
r=2r = 2
We will solve equations (1) and (2) to determine the values of pp and qq.
Now, subtract equations (1) and (2) to eliminate the value of qq and then find the value of pp
p+q5pq=1(7) 4p=8 p=2 p + q - 5p - q = 1 - \left( { - 7} \right) \\\ \Rightarrow - 4p = 8 \\\ \Rightarrow p = - 2
Substitute the value p=2p = - 2 in equation(1) to find the value of qq
\-2+q=1 q=3 \- 2 + q = 1 \\\ \Rightarrow q = 3
Therefore, the values of p,q,rp,q,r are 2,3,2 - 2, 3, 2

Hence, option D is the correct option.

Note:
If two coordinates (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) is equal to (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right), then x1=x2{x_1} = {x_2}, y1=y2{y_1} = {y_2} and z1=z2{z_1} = {z_2}. A centroid is a point of intersection of three medians of a triangle, where the median is a line from the vertex that divides the opposite side in two equal parts.