Solveeit Logo

Question

Question: If \[g\] is twice differentiable function and \[f\left( x \right) = xg\left( {{x^2}} \right)\], how ...

If gg is twice differentiable function and f(x)=xg(x2)f\left( x \right) = xg\left( {{x^2}} \right), how do you find in terms of gg, gg', and gg''?

Explanation

Solution

Here in this question, we have to differentiate the given function f(x)=xg(x2)f\left( x \right) = xg\left( {{x^2}} \right) and express of in terms of gg, gg', and gg''. First, we need to use the product rule for differentiating the function f(x)f\left( x \right) and lateral by chain rule also differentiate the function g(x)g\left( x \right) and second time differentiate the function f(x)f\left( x \right) and by further simplification using the standard differentiating formula to get the required solution.

Complete step by step answer:
The differentiation of a function is defined as the derivative or rate of change of a function. The function is said to be differentiable if the limit exists.
Consider the given function
f(x)=xg(x2)\Rightarrow \,\,\,\,f\left( x \right) = xg\left( {{x^2}} \right)---------- (1)
Differentiate function f(x)f\left( x \right) with respect to x
ddx(f(x))=ddx(xg(x2))\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {xg\left( {{x^2}} \right)} \right)
Now, we need to use the product rule of differentiation ddx(uv)=uddx(v)+vddx(u)\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}\left( v \right) + v\dfrac{d}{{dx}}\left( u \right), then
ddx(f(x))=xddx(g(x2))+g(x2)ddx(x)\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right) \cdot \dfrac{d}{{dx}}\left( x \right)
As we know, the standard formula: dxdx=1\dfrac{{dx}}{{dx}} = 1, and represent ddx(f(x))=f(x)\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = f'\left( x \right).
f(x)=xddx(g(x2))+g(x2)(1)\Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right) \cdot \left( 1 \right)
f(x)=xddx(g(x2))+g(x2)\Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right)
Now, then by the chain rule, we have:
ddx(g(x2))=g(x2)ddx(x2)\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = g'\left( {{x^2}} \right)\dfrac{d}{{dx}}\left( {{x^2}} \right)
As we know the formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}, then
ddx(g(x2))=g(x2)2x\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = g'\left( {{x^2}} \right)2x
ddx(g(x2))=2xg(x2)\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = 2xg'\left( {{x^2}} \right)----------(2)
Substitute (2) in equation (1), then
f(x)=x(2xg(x2))+g(x2)\Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \left( {2xg'\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right)
f(x)=2x2g(x2)+g(x2)\Rightarrow \,\,\,\,f'\left( x \right) = 2{x^2}g'\left( {{x^2}} \right) + g\left( {{x^2}} \right)--------(3)
Again, differentiating equation (3) a second time using product rule, then
ddx(f(x))=ddx(2x2g(x2)+g(x2))\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {2{x^2}g'\left( {{x^2}} \right) + g\left( {{x^2}} \right)} \right)
Represent ddx(f(x))=f(x)\dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = f''(x).
f(x)=2x2ddx(g(x2))+g(x2)ddx(2x2)+ddx(g(x2))\Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + g'\left( {{x^2}} \right)\dfrac{d}{{dx}}\left( {2{x^2}} \right) + \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right)
using the formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}, then
f(x)=2x2ddx(g(x2))+g(x2)2(2x)+g(x2)(2x)\Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + g'\left( {{x^2}} \right)2\left( {2x} \right) + g'\left( {{x^2}} \right)\left( {2x} \right)
f(x)=2x2ddx(g(x2))+4xg(x2)+2xg(x2)\Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + 4x\,g'\left( {{x^2}} \right) + 2x\,g'\left( {{x^2}} \right)
f(x)=2x2ddx(g(x2))+6xg(x2)\Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)--------(4)
And, again by the chain rule, we have:
ddx(g(x2))=g(x2)ddx(x2)\Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = g''\left( {{x^2}} \right)\,\dfrac{d}{{dx}}\left( {{x^2}} \right)
ddx(g(x2))=g(x2)2x\Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = g''\left( {{x^2}} \right)\,\,2x
ddx(g(x2))=2xg(x2)\Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = 2x\,g''\left( {{x^2}} \right)-----------(5)
Substitute equation (5) in (4), then
f(x)=2x2(2xg(x2))+6xg(x2)\Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\left( {2x\,g''\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)
f(x)=2x2(2xg(x2))+6xg(x2)\Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\left( {2x\,g''\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)
On simplification, we get
f(x)=4x3g(x2)+6xg(x2)\Rightarrow \,\,\,\,f''\left( x \right) = 4{x^3}g''\left( {{x^2}} \right) + 6x\,g'\left( {{x^2}} \right)
Hence, it’s a required solution.

Note: When solving these types of questions, the student must know about the standard differentiation formulas. If the function is a product of two terms and the both terms are the function of x the we use the product rule of differentiation to the function and behaviour of the chain rule while solving.