Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If gg is the inverse function of ff and f(x)=sinxf '(x) = sin\, x, then g(x)g '(x) is

A

cosec\left\\{g\left(x\right)\right\\}

B

sin\left\\{g\left(x\right)\right\\}

C

-\frac{1}{sin\left\\{g\left(x\right)\right\\}}

D

cos\left\\{g\left(x\right)\right\\}

Answer

cosec\left\\{g\left(x\right)\right\\}

Explanation

Solution

Given f1(x)=g(x)f^{ -1}(x) = g(x) x=f[g(x)]\Rightarrow x=f \left[g\left(x\right)\right] Diff. both side w.r.t(x)w.r.t \left(x\right) 1=f[g(x)].g(x)g(x)=1f(g(x))\Rightarrow 1=f '\left[g\left(x\right)\right].g '\left(x\right) \Rightarrow g '\left(x\right)=\frac{1}{f '\left(g\left(x\right)\right)} Given, f(x)=sinxf '\left(x\right) = sin\, x f(g(x))=sin[g(x)]\therefore f '\left(g\left(x\right)\right)=sin\left[g\left(x\right)\right] 1f(g(x))=cosec[g(x)]\Rightarrow \frac{1}{f '\left(g\left(x\right)\right)}=co\,sec\left[g\left(x\right)\right] Hence, g(x)=cosec[g(x)]g '\left(x\right) = cosec\left[g\left(x\right)\right]