Question
Mathematics Question on Continuity and differentiability
If g is the inverse function of f and f′(x)=sinx, then g′(x) is
A
cosec\left\\{g\left(x\right)\right\\}
B
sin\left\\{g\left(x\right)\right\\}
C
-\frac{1}{sin\left\\{g\left(x\right)\right\\}}
D
cos\left\\{g\left(x\right)\right\\}
Answer
cosec\left\\{g\left(x\right)\right\\}
Explanation
Solution
Given f−1(x)=g(x) ⇒x=f[g(x)] Diff. both side w.r.t(x) ⇒1=f′[g(x)].g′(x)⇒g′(x)=f′(g(x))1 Given, f′(x)=sinx ∴f′(g(x))=sin[g(x)] ⇒f′(g(x))1=cosec[g(x)] Hence, g′(x)=cosec[g(x)]