Solveeit Logo

Question

Question: If G is the centroid of a triangle ABC then\(\overset{\to }{\mathop{\text{GA}}}\,+\overset{\to }{\ma...

If G is the centroid of a triangle ABC thenGA+GB+GC\overset{\to }{\mathop{\text{GA}}}\,+\overset{\to }{\mathop{\text{GB}}}\,+\overset{\to }{\mathop{\text{GC}}}\, is equal to :
A . 0\overset{\to }{\mathop{0}}\,
B. 3GA3\overset{\to }{\mathop{\text{GA}}}\,
C. 3GB3\overset{\to }{\mathop{\text{GB}}}\,
D. 3GC3\overset{\to }{\mathop{\text{GC}}}\,

Explanation

Solution

Hint: In triangle ABC we can define centroid as G=A+B+C3\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3} where A,B,C\overrightarrow{A},\overrightarrow{B},\overrightarrow{C} are sides vector of triangle ABC. If have length of sides of triangle then we can use it as in same form.

Complete step by step solution:
If sides vectors of triangle ABC are A,B,C\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}. Then we can write centroid of triangle as
G=A+B+C3\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}
We can arrange it as
3G=A+B+C3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}..................................(i)
We can also write
GA=AG\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G}
GB=BG\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G}
GC=CG\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}
Hence given expression can be written as
GA+GB+GC=AG+BG+CG\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}-\overrightarrow{G}+\overrightarrow{B}-\overrightarrow{G}+\overrightarrow{C}-\overrightarrow{G}
GA+GB+GC=A+B+C3G\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}-3\overrightarrow{G}
From equation (i) we can write value of A+B+C\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}
GA+GB+GC=3G3G\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=3\overrightarrow{G}-3\overrightarrow{G}
GA+GB+GC=0\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0
Hence option a is correct.

Note: We can use the same formula of centroid in terms of coordinate as well. Also we can write AB\overrightarrow{AB} as difference of individual vector A and vector B as below:
AB=BA\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}
But we always write vector B first and then vector A. We need to remember this point.