Question
Question: If g is inverse of f and \(f^{'}(x) = \frac{1}{1 + x^{n}}\), then \(g^{'}(x)\) equals...
If g is inverse of f and f′(x)=1+xn1, then g′(x) equals
A
1+xn
B
1+[f(x)]n
C
1+[g(x)]n
D
None of these
Answer
1+[g(x)]n
Explanation
Solution
Since g is inverse of f. Therefore,
fog(x)=x for all x ⇒ dxd{fog(x)}=1 for all x
⇒f′(g(x)).g′(x)=1 ⇒ f′{g(x)}=g′(x)1
⇒ 1+[g(x)]n1=g′(x)1 [∵f′(x)=1+xn1]
⇒ g′(x)=1+[g(x)]n