Solveeit Logo

Question

Question: If g is inverse of f and \(f^{'}(x) = \frac{1}{1 + x^{n}}\), then \(g^{'}(x)\) equals...

If g is inverse of f and f(x)=11+xnf^{'}(x) = \frac{1}{1 + x^{n}}, then g(x)g^{'}(x) equals

A

1+xn1 + x^{n}

B

1+[f(x)]n1 + \lbrack f(x)\rbrack^{n}

C

1+[g(x)]n1 + \lbrack g(x)\rbrack^{n}

D

None of these

Answer

1+[g(x)]n1 + \lbrack g(x)\rbrack^{n}

Explanation

Solution

Since g is inverse of f. Therefore,

fog(x)=xfog(x) = x for all x ⇒ ddx{fog(x)}=1\frac{d}{dx}\{ fog(x)\} = 1 for all x

f(g(x)).g(x)=1f^{'}(g(x)).g^{'}(x) = 1f{g(x)}=1g(x)f^{'}\{ g(x)\} = \frac{1}{g^{'}(x)}

11+[g(x)]n=1g(x)\frac { 1 } { 1 + [ g ( x ) ] ^ { n } } = \frac { 1 } { g ^ { \prime } ( x ) } [f(x)=11+xn]\left\lbrack \because f^{'}(x) = \frac{1}{1 + x^{n}} \right\rbrack

g(x)=1+[g(x)]ng^{'}(x) = 1 + \lbrack g(x)\rbrack^{n}