Solveeit Logo

Question

Question: If $f(x)=\lim_{t\to 0} \tan\left(\frac{e^{2tx}-2tx-1}{2t^2}\right)$ and $L = \lim_{x\to 0} \frac{(f(...

If f(x)=limt0tan(e2tx2tx12t2)f(x)=\lim_{t\to 0} \tan\left(\frac{e^{2tx}-2tx-1}{2t^2}\right) and L=limx0(f(x))2x4x8L = \lim_{x\to 0} \frac{(f(x))^2 - x^4}{x^8} then which of the following is/are true?

A

[L] = 0; where [] represent greatest integer function

B

{L} = 23\frac{2}{3}; where {} represent fractional part

C

limx0f(Lx)x2=49\lim_{x\to 0} \frac{f(Lx)}{x^2} = \frac{4}{9}

D

limx0f(Lx)x2=1625\lim_{x\to 0} \frac{f(Lx)}{x^2} = \frac{16}{25}

Answer

Options A, B, C are true.

Explanation

Solution

Here's how to solve this problem:

1. Find f(x):

f(x)=limt0tan(e2tx2tx12t2)f(x) = \lim_{t\to 0} \tan\left(\frac{e^{2tx} - 2tx - 1}{2t^2}\right)

Expand e2txe^{2tx} as a series:

e2tx=1+2tx+(2tx)22!+(2tx)33!+=1+2tx+2t2x2+4t3x33+e^{2tx} = 1 + 2tx + \frac{(2tx)^2}{2!} + \frac{(2tx)^3}{3!} + \cdots = 1 + 2tx + 2t^2x^2 + \frac{4t^3x^3}{3} + \cdots

Then,

e2tx2tx1=2t2x2+4t3x33+e^{2tx} - 2tx - 1 = 2t^2x^2 + \frac{4t^3x^3}{3} + \cdots

Dividing by 2t22t^2:

e2tx2tx12t2=x2+2tx33+\frac{e^{2tx} - 2tx - 1}{2t^2} = x^2 + \frac{2tx^3}{3} + \cdots

As t0t\to 0, the higher order terms vanish:

f(x)=tan(x2)f(x) = \tan(x^2)

2. Find L:

L=limx0(f(x))2x4x8=limx0tan2(x2)x4x8L = \lim_{x\to 0} \frac{(f(x))^2 - x^4}{x^8} = \lim_{x\to 0} \frac{\tan^2(x^2) - x^4}{x^8}

Use the expansion:

tan(x2)=x2+x63+\tan(x^2) = x^2 + \frac{x^6}{3} + \cdots

Thus,

tan2(x2)=(x2+x63+)2=x4+2x83+\tan^2(x^2) = \left(x^2 + \frac{x^6}{3} + \cdots\right)^2 = x^4 + \frac{2x^8}{3} + \cdots

Therefore,

tan2(x2)x4=23x8+\tan^2(x^2) - x^4 = \frac{2}{3}x^8 + \cdots

Hence,

L=limx023x8x8=23L = \lim_{x\to 0} \frac{\frac{2}{3}x^8}{x^8} = \frac{2}{3}

3. Check the Options:

Option A:

[L]=[23]=0[L] = \left[\frac{2}{3}\right] = 0 (Greatest integer less than 23\tfrac{2}{3})

True.

Option B:

{L}=L[L]=230=23\{L\} = L - [L] = \frac{2}{3} - 0 = \frac{2}{3}

True.

Option C:

Compute f(Lx)f(Lx):

f(Lx)=tan((Lx)2)=tan(L2x2)=tan((23)2x2)=tan(49x2)f(Lx) = \tan((Lx)^2) = \tan\left(L^2x^2\right) = \tan\left(\left(\frac{2}{3}\right)^2 x^2\right) = \tan\left(\frac{4}{9}x^2\right)

Then,

limx0f(Lx)x2=limx0tan(49x2)x2\lim_{x\to 0} \frac{f(Lx)}{x^2} = \lim_{x\to 0} \frac{\tan\left(\frac{4}{9}x^2\right)}{x^2}

For small angles, tanyy\tan y \approx y:

tan(49x2)x249x2x2=49\frac{\tan\left(\frac{4}{9}x^2\right)}{x^2} \approx \frac{\frac{4}{9}x^2}{x^2} = \frac{4}{9}

True.

Option D:

States the limit equals 1625\frac{16}{25}, which is not the case.

False.