Solveeit Logo

Question

Question: If $f(x)=\left(\left(\frac{x}{\sec\left(\tan^{-1}\frac{1}{x}\right)}+\frac{1}{\csc\left(\tan^{-1}\fr...

If f(x)=((xsec(tan11x)+1csc(tan11x))21)1/2f(x)=\left(\left(\frac{x}{\sec\left(\tan^{-1}\frac{1}{x}\right)}+\frac{1}{\csc\left(\tan^{-1}\frac{1}{x}\right)}\right)^2-1\right)^{1/2} for 0<x<10 < x < 1, then which of the following option is correct

A

f1(x)=f(x)f^{-1}(x)=f(x)

B

Maximum value of f(x)f(x) is greater than 1

C

Minimum value of f(x)f(x) is less than -1

D

f(x)sinx=0f(x) - \sin x = 0 has atleast one root.

Answer

A. f1(x)=f(x)f^{-1}(x)=f(x)

Explanation

Solution

The given function is f(x)=((xsec(tan11x)+1csc(tan11x))21)1/2f(x)=\left(\left(\frac{x}{\sec\left(\tan^{-1}\frac{1}{x}\right)}+\frac{1}{\csc\left(\tan^{-1}\frac{1}{x}\right)}\right)^2-1\right)^{1/2} for 0<x<10 < x < 1.

Let θ=tan11x\theta = \tan^{-1}\frac{1}{x}. Since 0<x<10 < x < 1, 1x>1\frac{1}{x} > 1. The range of tan1y\tan^{-1} y for y>0y > 0 is (0,π2)(0, \frac{\pi}{2}). Since 1x>1\frac{1}{x} > 1, θ=tan11x\theta = \tan^{-1}\frac{1}{x} is in the interval (π4,π2)(\frac{\pi}{4}, \frac{\pi}{2}). In this interval, secθ>0\sec\theta > 0 and cscθ>0\csc\theta > 0. We have tanθ=1x\tan\theta = \frac{1}{x}. We can find secθ\sec\theta and cscθ\csc\theta using a right triangle or identities. Using identities: sec2θ=1+tan2θ=1+(1x)2=1+1x2=x2+1x2\sec^2\theta = 1 + \tan^2\theta = 1 + \left(\frac{1}{x}\right)^2 = 1 + \frac{1}{x^2} = \frac{x^2+1}{x^2}. Since θ(π4,π2)\theta \in (\frac{\pi}{4}, \frac{\pi}{2}), secθ>0\sec\theta > 0, so secθ=x2+1x2=x2+1x\sec\theta = \sqrt{\frac{x^2+1}{x^2}} = \frac{\sqrt{x^2+1}}{|x|}. Since 0<x<10 < x < 1, x=x|x| = x. Thus, secθ=x2+1x\sec\theta = \frac{\sqrt{x^2+1}}{x}. csc2θ=1+cot2θ=1+x2\csc^2\theta = 1 + \cot^2\theta = 1 + x^2. Since θ(π4,π2)\theta \in (\frac{\pi}{4}, \frac{\pi}{2}), cscθ>0\csc\theta > 0, so cscθ=1+x2\csc\theta = \sqrt{1+x^2}.

Now substitute these into the expression for f(x)f(x): xsec(tan11x)=xsecθ=xx2+1x=x2x2+1\frac{x}{\sec\left(\tan^{-1}\frac{1}{x}\right)} = \frac{x}{\sec\theta} = \frac{x}{\frac{\sqrt{x^2+1}}{x}} = \frac{x^2}{\sqrt{x^2+1}}. 1csc(tan11x)=1cscθ=1x2+1\frac{1}{\csc\left(\tan^{-1}\frac{1}{x}\right)} = \frac{1}{\csc\theta} = \frac{1}{\sqrt{x^2+1}}.

The expression inside the square is x2x2+1+1x2+1=x2+1x2+1=x2+1\frac{x^2}{\sqrt{x^2+1}} + \frac{1}{\sqrt{x^2+1}} = \frac{x^2+1}{\sqrt{x^2+1}} = \sqrt{x^2+1}.

So, f(x)=((x2+1)21)1/2=((x2+1)1)1/2=(x2)1/2f(x) = \left(\left(\sqrt{x^2+1}\right)^2 - 1\right)^{1/2} = \left((x^2+1) - 1\right)^{1/2} = (x^2)^{1/2}. Since the domain is 0<x<10 < x < 1, xx is positive, so (x2)1/2=x=x(x^2)^{1/2} = |x| = x. Thus, f(x)=xf(x) = x for 0<x<10 < x < 1.

Now let's evaluate the given options: A. f1(x)=f(x)f^{-1}(x)=f(x) The function is f(x)=xf(x) = x for x(0,1)x \in (0, 1). The domain of ff is (0,1)(0, 1) and the range of ff is (0,1)(0, 1). To find the inverse function, let y=f(x)=xy = f(x) = x. Swap xx and yy: x=yx = y. So y=xy = x. The domain of f1f^{-1} is the range of ff, which is (0,1)(0, 1). The range of f1f^{-1} is the domain of ff, which is (0,1)(0, 1). So, f1(x)=xf^{-1}(x) = x for x(0,1)x \in (0, 1). Therefore, f1(x)=f(x)f^{-1}(x) = f(x) for x(0,1)x \in (0, 1). This option is correct.

B. Maximum value of f(x)f(x) is greater than 1 f(x)=xf(x) = x for x(0,1)x \in (0, 1). The range of f(x)f(x) is (0,1)(0, 1). The values of f(x)f(x) are always strictly between 0 and 1. The supremum is 1, but it is not attained in the open interval. No value of f(x)f(x) is greater than 1. This option is incorrect.

C. Minimum value of f(x)f(x) is less than -1 f(x)=xf(x) = x for x(0,1)x \in (0, 1). The range of f(x)f(x) is (0,1)(0, 1). The values of f(x)f(x) are always strictly positive. The infimum is 0, but it is not attained in the open interval. No value of f(x)f(x) is less than -1. This option is incorrect.

D. f(x)sinx=0f(x) - \sin x = 0 has atleast one root. This is equivalent to f(x)=sinxf(x) = \sin x, which is x=sinxx = \sin x for x(0,1)x \in (0, 1). Consider the function g(x)=xsinxg(x) = x - \sin x. We are looking for a root of g(x)g(x) in the interval (0,1)(0, 1). We know that for x>0x > 0, sinx<x\sin x < x. To prove this, consider h(x)=xsinxh(x) = x - \sin x. h(x)=1cosxh'(x) = 1 - \cos x. For x(0,1)x \in (0, 1), 0<x<1<π20 < x < 1 < \frac{\pi}{2}, so cosx<1\cos x < 1. Thus h(x)=1cosx>0h'(x) = 1 - \cos x > 0 for x(0,1)x \in (0, 1). Since h(x)h(x) is strictly increasing on (0,1)(0, 1) and h(0)=0sin0=0h(0) = 0 - \sin 0 = 0, for any x(0,1)x \in (0, 1), h(x)>h(0)=0h(x) > h(0) = 0. So xsinx>0x - \sin x > 0 for all x(0,1)x \in (0, 1). The equation x=sinxx = \sin x has no solution in the interval (0,1)(0, 1). This option is incorrect.

The only correct option is A.