Solveeit Logo

Question

Question: If \(f(x)\left\{ \begin{matrix} - 1, & x & \begin{matrix} < & 0 \end{matrix} \\ 0, & x & \begin{ma...

If $f(x)\left{ \begin{matrix}

  • 1, & x & \begin{matrix} < & 0 \end{matrix} \ 0, & x & \begin{matrix} = & 0 \end{matrix} \ 1, & x & \begin{matrix}

& 0 \end{matrix} \end{matrix} \right.\ theninorderthatfbecontinuousatthen in order that f be continuous atx + \frac{1}{x}$, the value of c is

A

2

B

4

C

6

D

8

Answer

6

Explanation

Solution

limx0+f(x)=limx0+x2+2x+c13x2=c1=c\lim _ { x \rightarrow 0 + } f ( x ) = \lim _ { x \rightarrow 0 + } \frac { x ^ { 2 } + 2 x + c } { 1 - 3 x ^ { 2 } } = \frac { c } { 1 } = c

Hence for ffto be continuous c = 6.