Solveeit Logo

Question

Question: If f(x)=2x+|x|, g(x)=$\frac{1}{3}$(2x-|x|) and h(x)=f(g(x)), then domain of function F(x) = $sin^{-...

If f(x)=2x+|x|, g(x)=13\frac{1}{3}(2x-|x|) and h(x)=f(g(x)), then domain of function

F(x) = sin1sin^{-1}(h(h(h(h....h(x)....)))1000 times\underbrace{h(h(h(h....h(x)....)))}_{1000 \text{ times}}) is equal to which of the following options

A

[-1, 1]

B

[-1, -12\frac{1}{2}] \cup [12\frac{1}{2},1]

C

[-1,-12\frac{1}{2}]

D

[12\frac{1}{2},1]

Answer

[-1, 1]

Explanation

Solution

Let the given functions be f(x)=2x+xf(x) = 2x + |x| and g(x)=13(2xx)g(x) = \frac{1}{3}(2x - |x|).

We first analyze the functions f(x)f(x) and g(x)g(x) by considering the two cases for x|x|.

For f(x)f(x): If x0x \ge 0, x=x|x| = x, so f(x)=2x+x=3xf(x) = 2x + x = 3x. If x<0x < 0, x=x|x| = -x, so f(x)=2xx=xf(x) = 2x - x = x. Thus, f(x)={3xif x0xif x<0f(x) = \begin{cases} 3x & \text{if } x \ge 0 \\ x & \text{if } x < 0 \end{cases}.

For g(x)g(x): If x0x \ge 0, x=x|x| = x, so g(x)=13(2xx)=13xg(x) = \frac{1}{3}(2x - x) = \frac{1}{3}x. If x<0x < 0, x=x|x| = -x, so g(x)=13(2x+x)=xg(x) = \frac{1}{3}(2x + x) = x. Thus, g(x)={13xif x0xif x<0g(x) = \begin{cases} \frac{1}{3}x & \text{if } x \ge 0 \\ x & \text{if } x < 0 \end{cases}.

Now we find the function h(x)=f(g(x))h(x) = f(g(x)). We need to consider the cases based on the sign of xx.

Case 1: x0x \ge 0. In this case, g(x)=13xg(x) = \frac{1}{3}x. Since x0x \ge 0, g(x)=13x0g(x) = \frac{1}{3}x \ge 0. We use the definition of f(y)f(y) for y0y \ge 0, which is f(y)=3yf(y) = 3y. So, h(x)=f(g(x))=f(13x)=3(13x)=xh(x) = f(g(x)) = f(\frac{1}{3}x) = 3(\frac{1}{3}x) = x. This holds for x0x \ge 0.

Case 2: x<0x < 0. In this case, g(x)=xg(x) = x. Since x<0x < 0, g(x)=x<0g(x) = x < 0. We use the definition of f(y)f(y) for y<0y < 0, which is f(y)=yf(y) = y. So, h(x)=f(g(x))=f(x)=xh(x) = f(g(x)) = f(x) = x. This holds for x<0x < 0.

Combining both cases, we find that h(x)=xh(x) = x for all xRx \in \mathbb{R}.

Next, we need to find h1000(x)h_{1000}(x), which is the 1000-fold composition of hh with itself. h1(x)=h(x)=xh_1(x) = h(x) = x. h2(x)=h(h1(x))=h(x)=xh_2(x) = h(h_1(x)) = h(x) = x. h3(x)=h(h2(x))=h(x)=xh_3(x) = h(h_2(x)) = h(x) = x. By induction, if hk(x)=xh_k(x) = x, then hk+1(x)=h(hk(x))=h(x)=xh_{k+1}(x) = h(h_k(x)) = h(x) = x. Therefore, hn(x)=xh_n(x) = x for any positive integer nn. Specifically, h1000(x)=xh_{1000}(x) = x.

The function F(x)F(x) is given by F(x)=sin1(h1000(x))F(x) = \sin^{-1}(h_{1000}(x)). Substituting h1000(x)=xh_{1000}(x) = x, we get F(x)=sin1(x)F(x) = \sin^{-1}(x).

The domain of the inverse sine function, sin1(y)\sin^{-1}(y), is [1,1][-1, 1]. This means the argument of the sin1\sin^{-1} function must lie in the interval [1,1][-1, 1]. For F(x)=sin1(x)F(x) = \sin^{-1}(x), the argument is xx. So, the domain of F(x)F(x) is the set of all xx such that x[1,1]x \in [-1, 1].

The domain of F(x)F(x) is [1,1][-1, 1].