Question
Question: If $f(x)+2f(\frac{1}{1-x})=x \space \forall x \in R-\{1\}$ then the value of $27 f(4)$ is...
If f(x)+2f(1−x1)=x∀x∈R−{1} then the value of 27f(4) is

21
22
23
17
23
Solution
The given functional equation is f(x)+2f(1−x1)=x for all x∈R−{1}. We want to find the value of 27f(4).
Let x=4. Substituting this into the given equation, we get: f(4)+2f(1−41)=4 f(4)+2f(−31)=4(1)
Now, let x=−31. Substituting this into the given equation: f(−31)+2f(1−(−31)1)=−31 f(−31)+2f(1+311)=−31 f(−31)+2f(341)=−31 f(−31)+2f(43)=−31(2)
Next, let x=43. Substituting this into the given equation: f(43)+2f(1−431)=43 f(43)+2f(411)=43 f(43)+2f(4)=43(3)
We now have a system of three linear equations with three unknowns: f(4), f(−31), and f(43). Let A=f(4), B=f(−31), and C=f(43). The system of equations becomes:
- A+2B=4
- B+2C=−31
- C+2A=43
We want to find the value of A. From equation (1), we can express B in terms of A: 2B=4−A⟹B=24−A
Substitute this expression for B into equation (2): 24−A+2C=−31 Multiply by 2 to clear the denominator: 4−A+4C=−32 Now, express 4C in terms of A: 4C=A−4−32 4C=A−312−32 4C=A−314 C=4A−1214=4A−67
Now substitute this expression for C into equation (3): (4A−67)+2A=43 Combine the terms with A: 4A+2A=43+67 4A+8A=129+1214 49A=1223
Solve for A: A=1223×94 A=3×923 A=2723
So, f(4)=2723. The question asks for the value of 27f(4). 27f(4)=27×2723=23.
The value of 27f(4) is 23.