Solveeit Logo

Question

Question: If \(f(x)=16\left(\left(\cos ^{-1} x\right)^{2}+\left(\sin ^{-1} x\right)^{2}\right)\), then find su...

If f(x)=16((cos1x)2+(sin1x)2)f(x)=16\left(\left(\cos ^{-1} x\right)^{2}+\left(\sin ^{-1} x\right)^{2}\right), then find sum of min. & max. value of f(x)f(x)

B

22π222 \pi^{2}

C

24π224 \pi^{2}

D

18π218 \pi^{2}

E

31π231 \pi^{2}

Answer

22π222 \pi^{2}

Explanation

Solution

The function f(x)f(x) can be simplified using the identity sin1x+cos1x=π2\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}. By substituting sin1x=θ\sin^{-1} x = \theta, we can express f(x)f(x) in terms of θ\theta and find its minimum and maximum values. The minimum value occurs at θ=0\theta = 0 and the maximum at θ=π2\theta = \frac{\pi}{2}. Evaluating these gives the sum of minimum and maximum values as 22π222\pi^2.