Solveeit Logo

Question

Question: If \(f(x + y) = f(x).f(y)\) for all x and y and ![](https://cdn.pureessence.tech/canvas_105.png?top_...

If f(x+y)=f(x).f(y)f(x + y) = f(x).f(y) for all x and y and f(0)=3,f^{'}(0) = 3, then f(5)f^{'}(5) will be

A

2

B

4

C

6

D

8

Answer

6

Explanation

Solution

Let x=5,y=0x = 5,y = 0f(5+0)=f(5).f(0)f(5 + 0) = f(5).f(0)

f(5)=f(5)f(0)f(5) = f(5)f(0)f(0)=1f(0) = 1

Therefore, f(5)=limh0f(5+h)f(5)hf^{'}(5) = \lim_{h \rightarrow 0}\frac{f(5 + h) - f(5)}{h}

= limh0f(5)f(h)f(5)h=limh02[f(h)1h]{f(5)=2}\lim_{h \rightarrow 0}\frac{f(5)f(h) - f(5)}{h} = \lim_{h \rightarrow 0}2\left\lbrack \frac{f(h) - 1}{h} \right\rbrack\{\because f(5) = 2\}

= 2limh0[f(h)f(0)h]=2×f(0)=2×3=62\lim_{h \rightarrow 0}\left\lbrack \frac{f(h) - f(0)}{h} \right\rbrack = 2 \times f^{'}(0) = 2 \times 3 = 6.