Solveeit Logo

Question

Question: If f(x) = xe<sup>x(1 – x)</sup>, then f(x)...

If f(x) = xex(1 – x), then f(x)

A

Increasing on [12,1]\left\lbrack - \frac{1}{2},1 \right\rbrack

B

Decreasing on R

C

Increasing on R

D

Decreasing on [12,1]\left\lbrack - \frac{1}{2},1 \right\rbrack

Answer

Increasing on [12,1]\left\lbrack - \frac{1}{2},1 \right\rbrack

Explanation

Solution

f '(x) = ex(1 – x) + xex(1 – x) (1 – 2x)

f '(x) = ex(1 – x) (1 + x – 2x2)

f '(x) = – ex(1–x) (2x + 1) (x – 1)

wavy curve Method sign of f '(x)

\begin{tabular} { l l l l } - & & & \ \hline & 1/2- 1 / 2 & + & 1 \end{tabular}

f(x) is increasing in [12,1]\left\lbrack - \frac{1}{2},1 \right\rbrack

f(x) is decreasing in (,12]\left( - \infty, - \frac{1}{2} \right\rbrackČ [1, )