Solveeit Logo

Question

Question: If $f(x) = x^5 + 2x - 3$, then $(F^{-1})'(-3) =$...

If f(x)=x5+2x3f(x) = x^5 + 2x - 3, then (F1)(3)=(F^{-1})'(-3) =

A

0

B

-3

C

-\frac{1}{3}

D

\frac{1}{2}

Answer

\frac{1}{2}

Explanation

Solution

To find (f1)(3)(f^{-1})'(-3), we use the formula for the derivative of an inverse function: (f1)(y)=1f(x)(f^{-1})'(y) = \frac{1}{f'(x)}, where y=f(x)y = f(x).

First, we need to find the value of xx such that f(x)=3f(x) = -3. x5+2x3=3x^5 + 2x - 3 = -3 x5+2x=0x^5 + 2x = 0 x(x4+2)=0x(x^4 + 2) = 0

The real solution is x=0x = 0. We verify this: f(0)=05+2(0)3=3f(0) = 0^5 + 2(0) - 3 = -3.

Next, we find the derivative of f(x)f(x): f(x)=5x4+2f'(x) = 5x^4 + 2

Now, we evaluate f(x)f'(x) at x=0x=0: f(0)=5(0)4+2=2f'(0) = 5(0)^4 + 2 = 2

Finally, we use the inverse function derivative formula: (f1)(3)=1f(0)=12(f^{-1})'(-3) = \frac{1}{f'(0)} = \frac{1}{2}

Therefore, (F1)(3)=12(F^{-1})'(-3) = \frac{1}{2}.