Solveeit Logo

Question

Question: If f(x) = x + tanx and f is inverse of g then g'(x) is equal to...

If f(x) = x + tanx and f is inverse of g then g'(x) is equal to

A

11+[g(x)x]2\frac{1}{1 + \lbrack g(x) - x\rbrack^{2}}

B

12+[g(x)x2]\frac{1}{2 + \lbrack g(x) - x^{2}\rbrack}

C

12+[g(x)x]2\frac{1}{2 + \lbrack g(x) - x\rbrack^{2}}

D

None

Answer

12+[g(x)x]2\frac{1}{2 + \lbrack g(x) - x\rbrack^{2}}

Explanation

Solution

Q g(x) = f–1 (x) Ž f (g(x)) = x differentiable

Ž f '(g(x)) . g'(x) = 1

Ž g'(x) = 1f(g(x))\frac{1}{f'(g(x))} ….(1)

Now from curve

f '(x) = 1 + sec2x

f '(g(x)) = 1 + sec2g(x) = 2 + tan2g(x) …(2)

Now from curve

f (g(x)) = g(x) + tan g(x)

x = g(x) + tan g(x)

Ž tan g(x) = x – g(x) …(3)

from (1), (2), (3)

g'(x) = 12+[xg(x)]2\frac{1}{2 + \lbrack x - g(x)\rbrack^{2}}