Solveeit Logo

Question

Question: If f(x) = x + tan x and g(x) is the inverse of f(x), then g'(x) is equal to...

If f(x) = x + tan x and g(x) is the inverse of f(x), then g'(x) is equal to

A

11+[g(x)x]2\frac{1}{1 + \lbrack g(x) - x\rbrack^{2}}

B

12+[g(x)+x]2\frac{1}{2 + \lbrack g(x) + x\rbrack^{2}}

C

12+[g(x)x]2\frac{1}{2 + \lbrack g(x) - x\rbrack^{2}}

D

None of these

Answer

12+[g(x)x]2\frac{1}{2 + \lbrack g(x) - x\rbrack^{2}}

Explanation

Solution

Given, f(x) = x + tan x

̃ f(f–1(x)) = f–1(x) + tan (f–1 (x))

̃ x = g(x) + tan(g(x)) …(i)

[Q g(x) = f–1 (x)]

̃ 1 = g'(x) + sec2(g(x))g'(x)

̃ g'(x) = 11+sec2(g(x))\frac{1}{1 + \sec^{2}(g(x))}

̃ g'(x) = 12+tan2(g(x))\frac{1}{2 + \tan^{2}(g(x))}

̃ g'(x) = 12+[xg(x))]2\frac{1}{2 + \lbrack x - g(x))\rbrack^{2}} [from Eq. (i)]