Solveeit Logo

Question

Question: If f(x) = x + tan x and f is inverse of g then g'(x) is equal to...

If f(x) = x + tan x and f is inverse of g then g'(x) is equal to

A

11+(g(x)x)2\frac{1}{1 + (g(x) - x)^{2}}

B

12(g(x)x)2\frac{1}{2 - (g(x) - x)^{2}}

C

12+(g(x)x)2\frac{1}{2 + (g(x) - x)^{2}}

D

None of these

Answer

12+(g(x)x)2\frac{1}{2 + (g(x) - x)^{2}}

Explanation

Solution

So that we can write f–1(y) = g(y)

Now f(x) = x + tan x

Put x = f–1(y)

f(f–1 y) = f–1(y) + tan (f–1 y)

y = g(y) + tan g(y)

y ⇒ x

x = g(x) + tan g(x) ...(1)

Diff. the function

1 = g'(x) + sec2 g(x) . g'(x)

g'(x) = 11+sec2g(x)\frac{1}{1 + \sec^{2}g(x)} = 12+(xg(x))2\frac{1}{2 + (x - g(x))^{2}}

from equation (1) tan g(x) = [x – g(x)]

sec2 g(x) = 1 + tan2 g(x)

= 1 + [x – g(x))2