Question
Question: If $f(x) = x + \sin x$ and I denotes the value of integral $\int_{\pi}^{2\pi} [f^{-1}(x) + \sin x]dx...
If f(x)=x+sinx and I denotes the value of integral ∫π2π[f−1(x)+sinx]dx then the value of [32I] (where [.] denotes greatest integer function)

2
9
8
10
9
Solution
Let f(x)=x+sinx. We need to evaluate I=∫π2π[f−1(x)+sinx]dx. The derivative of f(x) is f′(x)=1+cosx. For x∈[π,2π], f′(x)≥0, and f′(x)=0 only at x=π. Thus, f(x) is strictly increasing in this interval and its inverse function f−1(x) exists. Evaluating f(x) at the limits: f(π)=π+sinπ=π. f(2π)=2π+sin2π=2π. So, for x∈[π,2π], the range of f(x) is [π,2π]. This implies f−1(x) maps [π,2π] to [π,2π].
We can split the integral I into two parts: I=∫π2πf−1(x)dx+∫π2πsinxdx.
The second part of the integral is: ∫π2πsinxdx=[−cosx]π2π=−cos(2π)−(−cos(π))=−1−(−(−1))=−1−1=−2.
For the first part, ∫π2πf−1(x)dx, we use the property: ∫abf(x)dx+∫f(a)f(b)f−1(y)dy=bf(b)−af(a). Here, a=π, b=2π, f(a)=π, and f(b)=2π. First, calculate ∫π2πf(x)dx: ∫π2πf(x)dx=∫π2π(x+sinx)dx=[2x2−cosx]π2π =(2(2π)2−cos(2π))−(2π2−cos(π)) =(2π2−1)−(2π2−(−1))=2π2−1−2π2−1=23π2−2.
Using the property: ∫π2πf(x)dx+∫π2πf−1(x)dx=(2π)f(2π)−πf(π) =(2π)(2π)−π(π)=4π2−π2=3π2.
Therefore, ∫π2πf−1(x)dx=3π2−∫π2πf(x)dx =3π2−(23π2−2)=3π2−23π2+2=23π2+2.
Now, we find the value of I: I=∫π2πf−1(x)dx+∫π2πsinxdx=(23π2+2)+(−2)=23π2.
The problem asks for the value of [32I]. 32I=32(23π2)=π2.
We need to find the greatest integer of π2. Since π≈3.14159, π2≈(3.14159)2≈9.8696. The greatest integer of π2 is 9.
[32I]=[π2]=9.