Solveeit Logo

Question

Question: If $f(x) = x + \sin x$ and I denotes the value of integral $\int_{\pi}^{2\pi} [f^{-1}(x) + \sin x]dx...

If f(x)=x+sinxf(x) = x + \sin x and I denotes the value of integral π2π[f1(x)+sinx]dx\int_{\pi}^{2\pi} [f^{-1}(x) + \sin x]dx then the value of [2I3][\frac{2I}{3}] (where [.] denotes greatest integer function)

A

2

B

9

C

8

D

10

Answer

9

Explanation

Solution

Let f(x)=x+sinxf(x) = x + \sin x. We need to evaluate I=π2π[f1(x)+sinx]dxI = \int_{\pi}^{2\pi} [f^{-1}(x) + \sin x]dx. The derivative of f(x)f(x) is f(x)=1+cosxf'(x) = 1 + \cos x. For x[π,2π]x \in [\pi, 2\pi], f(x)0f'(x) \ge 0, and f(x)=0f'(x) = 0 only at x=πx = \pi. Thus, f(x)f(x) is strictly increasing in this interval and its inverse function f1(x)f^{-1}(x) exists. Evaluating f(x)f(x) at the limits: f(π)=π+sinπ=πf(\pi) = \pi + \sin \pi = \pi. f(2π)=2π+sin2π=2πf(2\pi) = 2\pi + \sin 2\pi = 2\pi. So, for x[π,2π]x \in [\pi, 2\pi], the range of f(x)f(x) is [π,2π][\pi, 2\pi]. This implies f1(x)f^{-1}(x) maps [π,2π][\pi, 2\pi] to [π,2π][\pi, 2\pi].

We can split the integral II into two parts: I=π2πf1(x)dx+π2πsinxdxI = \int_{\pi}^{2\pi} f^{-1}(x)dx + \int_{\pi}^{2\pi} \sin x dx.

The second part of the integral is: π2πsinxdx=[cosx]π2π=cos(2π)(cos(π))=1((1))=11=2\int_{\pi}^{2\pi} \sin x dx = [-\cos x]_{\pi}^{2\pi} = -\cos(2\pi) - (-\cos(\pi)) = -1 - (-(-1)) = -1 - 1 = -2.

For the first part, π2πf1(x)dx\int_{\pi}^{2\pi} f^{-1}(x)dx, we use the property: abf(x)dx+f(a)f(b)f1(y)dy=bf(b)af(a)\int_{a}^{b} f(x)dx + \int_{f(a)}^{f(b)} f^{-1}(y)dy = b f(b) - a f(a). Here, a=πa = \pi, b=2πb = 2\pi, f(a)=πf(a) = \pi, and f(b)=2πf(b) = 2\pi. First, calculate π2πf(x)dx\int_{\pi}^{2\pi} f(x)dx: π2πf(x)dx=π2π(x+sinx)dx=[x22cosx]π2π\int_{\pi}^{2\pi} f(x)dx = \int_{\pi}^{2\pi} (x + \sin x)dx = \left[\frac{x^2}{2} - \cos x\right]_{\pi}^{2\pi} =((2π)22cos(2π))(π22cos(π))= \left(\frac{(2\pi)^2}{2} - \cos(2\pi)\right) - \left(\frac{\pi^2}{2} - \cos(\pi)\right) =(2π21)(π22(1))=2π21π221=3π222= \left(2\pi^2 - 1\right) - \left(\frac{\pi^2}{2} - (-1)\right) = 2\pi^2 - 1 - \frac{\pi^2}{2} - 1 = \frac{3\pi^2}{2} - 2.

Using the property: π2πf(x)dx+π2πf1(x)dx=(2π)f(2π)πf(π)\int_{\pi}^{2\pi} f(x)dx + \int_{\pi}^{2\pi} f^{-1}(x)dx = (2\pi) f(2\pi) - \pi f(\pi) =(2π)(2π)π(π)=4π2π2=3π2= (2\pi)(2\pi) - \pi(\pi) = 4\pi^2 - \pi^2 = 3\pi^2.

Therefore, π2πf1(x)dx=3π2π2πf(x)dx\int_{\pi}^{2\pi} f^{-1}(x)dx = 3\pi^2 - \int_{\pi}^{2\pi} f(x)dx =3π2(3π222)=3π23π22+2=3π22+2= 3\pi^2 - \left(\frac{3\pi^2}{2} - 2\right) = 3\pi^2 - \frac{3\pi^2}{2} + 2 = \frac{3\pi^2}{2} + 2.

Now, we find the value of II: I=π2πf1(x)dx+π2πsinxdx=(3π22+2)+(2)=3π22I = \int_{\pi}^{2\pi} f^{-1}(x)dx + \int_{\pi}^{2\pi} \sin x dx = \left(\frac{3\pi^2}{2} + 2\right) + (-2) = \frac{3\pi^2}{2}.

The problem asks for the value of [2I3][\frac{2I}{3}]. 2I3=23(3π22)=π2\frac{2I}{3} = \frac{2}{3} \left(\frac{3\pi^2}{2}\right) = \pi^2.

We need to find the greatest integer of π2\pi^2. Since π3.14159\pi \approx 3.14159, π2(3.14159)29.8696\pi^2 \approx (3.14159)^2 \approx 9.8696. The greatest integer of π2\pi^2 is 99.

[2I3]=[π2]=9[\frac{2I}{3}] = [\pi^2] = 9.