Question
Question: If f(x) = x + \(\frac{x^{2}}{1!} + \frac{x^{3}}{2!}\)+ …….\(\frac{x^{n}}{(n - 1)!}\), then f(0) + f...
If f(x) = x + 1!x2+2!x3+ …….(n−1)!xn, then
f(0) + f ′(0) + f ′′(0) + ….. f ′′′…….n times(0) is equal to
A
2n(n+1)
B
2n2+1
C
(2n(n+1))2
D
6n(n+1)(2n+1)
Answer
2n(n+1)
Explanation
Solution
f ′(x) = 1 + 2x + 2!3x2…….
⇒ f ′(0) = 1
f " (x) = 2 + 3x + ……..
⇒ f "(0) = 2
f ′′′…….n times (0) = n
f(0) + f ′(0) + f "(0) + ……..+ f "" …..n times(0)
= 1 + 2 + 3 + …..+ n = 2n(n+1)