Question
Question: If f(x) = x + (1/x); x <= -1, f^-1(x)= ?...
If f(x) = x + (1/x); x <= -1, f^-1(x)= ?
Answer
f^{-1}(x)=\frac{x-\sqrt{x^2-4}}{2} \quad \text{for } x\le -2.
Explanation
Solution
Solution:
We are given
f(x)=x+x1with x≤−1.Let
y=x+x1.Multiply both sides by x (note x=0):
yx=x2+1.Rearranging, we obtain the quadratic in x:
x2−yx+1=0.Using the quadratic formula,
x=2y±y2−4.Since the original domain is x≤−1 (and the range of f is y≤−2), we choose the branch that gives x≤−1. Testing, for example, with y=−3:
2−3+9−4≈2−3+2.236≈−0.382(not in domain) 2−3−9−4≈2−3−2.236≈−2.618(valid).Thus, the inverse function is:
f−1(y)=2y−y2−4for y≤−2.Explanation (Minimal):
- Write y=x+x1.
- Multiply by x to get x2−yx+1=0.
- Solve using the quadratic formula.
- Select the branch 2y−y2−4 to satisfy x≤−1.