Solveeit Logo

Question

Question: If f(x) = x + (1/x); x <= -1, f^-1(x)= ?...

If f(x) = x + (1/x); x <= -1, f^-1(x)= ?

Answer

f^{-1}(x)=\frac{x-\sqrt{x^2-4}}{2} \quad \text{for } x\le -2.

Explanation

Solution

Solution:

We are given

f(x)=x+1xwith x1.f(x)= x+\frac{1}{x}\quad \text{with } x\le -1.

Let

y=x+1x.y=x+\frac{1}{x}.

Multiply both sides by xx (note x0x\neq0):

yx=x2+1.yx=x^2+1.

Rearranging, we obtain the quadratic in xx:

x2yx+1=0.x^2-yx+1=0.

Using the quadratic formula,

x=y±y242.x=\frac{y\pm\sqrt{y^2-4}}{2}.

Since the original domain is x1x\le -1 (and the range of ff is y2y\le -2), we choose the branch that gives x1x\le -1. Testing, for example, with y=3y=-3:

3+9423+2.23620.382(not in domain)\frac{-3+\sqrt{9-4}}{2}\approx \frac{-3+2.236}{2}\approx -0.382 \quad (\text{not in domain}) 394232.23622.618(valid).\frac{-3-\sqrt{9-4}}{2}\approx \frac{-3-2.236}{2}\approx -2.618 \quad (\text{valid}).

Thus, the inverse function is:

f1(y)=yy242for y2.f^{-1}(y)=\frac{y-\sqrt{y^2-4}}{2}\quad \text{for } y\le -2.

Explanation (Minimal):

  1. Write y=x+1xy = x + \frac{1}{x}.
  2. Multiply by xx to get x2yx+1=0x^2 -yx + 1=0.
  3. Solve using the quadratic formula.
  4. Select the branch yy242\frac{y-\sqrt{y^2-4}}{2} to satisfy x1x\le -1.