Solveeit Logo

Question

Question: If f(x) = tan<sup>–1</sup> x + ln\(\sqrt{1 + x}\) – ln\(\sqrt{1 - x}\). The integral of 1/2 f ' (x) ...

If f(x) = tan–1 x + ln1+x\sqrt{1 + x} – ln1x\sqrt{1 - x}. The integral of 1/2 f ' (x) with respect to x4 is –

A

ex4+ce^{- x^{4}} + c

B

– ln (1 – x4) + c

C

e1x4+ce^{\sqrt{1 - x^{4}}} + c

D

ln(1 + x2)+ c

Answer

– ln (1 – x4) + c

Explanation

Solution

f(x) = tan–1 x + ln1+x\sqrt{1 + x} – ln1x\sqrt{1 - x}

f '(x) = 11+x2\frac{1}{1 + x^{2}} + 12(1+x)\frac{1}{2(1 + x)} + 12(1x)\frac{1}{2(1 - x)}

= 11+x2+11x22(1x4)\frac { 1 } { 1 + x ^ { 2 } } + \frac { 1 } { 1 - x ^ { 2 } } \Rightarrow \frac { 2 } { \left( 1 - x ^ { 4 } \right) }

12\frac{1}{2} f ' (x) = 11x4\frac{1}{1 - x^{4}}

dtt\int \frac { \mathrm { dt } } { \mathrm { t } } ̃ – lnt + c 1 – x4 = t

– ln (1 – x4) + c – dx4 = dt