Solveeit Logo

Question

Question: If $f(x) = \tan^{-1}(\frac{\sqrt{1+x^2}-1}{x})$ then $f'(0)$ is:...

If f(x)=tan1(1+x21x)f(x) = \tan^{-1}(\frac{\sqrt{1+x^2}-1}{x}) then f(0)f'(0) is:

A

12\frac{1}{2}

B

0

C

1

D

non existant

Answer

1/2

Explanation

Solution

To find f(0)f'(0) for f(x)=tan1(1+x21x)f(x) = \tan^{-1}(\frac{\sqrt{1+x^2}-1}{x}), we first simplify the expression for f(x)f(x).

Step 1: Simplify the expression inside the tan1\tan^{-1} function.

Let x=tanθx = \tan\theta. Since the domain of tan1x\tan^{-1}x is (,)(-\infty, \infty), θ=tan1x\theta = \tan^{-1}x implies θ(π/2,π/2)\theta \in (-\pi/2, \pi/2).

Substitute x=tanθx = \tan\theta into the expression:

1+x21x=1+tan2θ1tanθ\frac{\sqrt{1+x^2}-1}{x} = \frac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}

We know that 1+tan2θ=sec2θ1+\tan^2\theta = \sec^2\theta.

=sec2θ1tanθ= \frac{\sqrt{\sec^2\theta}-1}{\tan\theta}

Since θ(π/2,π/2)\theta \in (-\pi/2, \pi/2), cosθ>0\cos\theta > 0, which means secθ>0\sec\theta > 0. Therefore, sec2θ=secθ=secθ\sqrt{\sec^2\theta} = |\sec\theta| = \sec\theta.

=secθ1tanθ= \frac{\sec\theta-1}{\tan\theta}

Convert secθ\sec\theta and tanθ\tan\theta to sinθ\sin\theta and cosθ\cos\theta:

=1cosθ1sinθcosθ=1cosθcosθsinθcosθ=1cosθsinθ= \frac{\frac{1}{\cos\theta}-1}{\frac{\sin\theta}{\cos\theta}} = \frac{\frac{1-\cos\theta}{\cos\theta}}{\frac{\sin\theta}{\cos\theta}} = \frac{1-\cos\theta}{\sin\theta}

Now, use the half-angle trigonometric identities: 1cosθ=2sin2(θ/2)1-\cos\theta = 2\sin^2(\theta/2) and sinθ=2sin(θ/2)cos(θ/2)\sin\theta = 2\sin(\theta/2)\cos(\theta/2).

=2sin2(θ/2)2sin(θ/2)cos(θ/2)=sin(θ/2)cos(θ/2)=tan(θ/2)= \frac{2\sin^2(\theta/2)}{2\sin(\theta/2)\cos(\theta/2)} = \frac{\sin(\theta/2)}{\cos(\theta/2)} = \tan(\theta/2)

Step 2: Determine the simplified form of f(x)f(x).

Substitute the simplified expression back into f(x)f(x):

f(x)=tan1(tan(θ/2))f(x) = \tan^{-1}(\tan(\theta/2))

Since θ(π/2,π/2)\theta \in (-\pi/2, \pi/2), it follows that θ/2(π/4,π/4)\theta/2 \in (-\pi/4, \pi/4).

For any y(π/2,π/2)y \in (-\pi/2, \pi/2), tan1(tany)=y\tan^{-1}(\tan y) = y. Since θ/2(π/4,π/4)\theta/2 \in (-\pi/4, \pi/4), which is a subinterval of (π/2,π/2)(-\pi/2, \pi/2), we have:

f(x)=θ/2f(x) = \theta/2

Now, substitute back θ=tan1x\theta = \tan^{-1}x:

f(x)=12tan1xf(x) = \frac{1}{2}\tan^{-1}x

This simplified form is valid for all xRx \in \mathbb{R}.

For x=0x=0, the original function's argument is 1+0210=00\frac{\sqrt{1+0^2}-1}{0} = \frac{0}{0}, which is an indeterminate form.

We evaluate the limit: limx01+x21x=limx0(1+x21)(1+x2+1)x(1+x2+1)=limx01+x21x(1+x2+1)=limx0x2x(1+x2+1)=limx0x1+x2+1=01+1=0\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{x} = \lim_{x \to 0} \frac{(\sqrt{1+x^2}-1)(\sqrt{1+x^2}+1)}{x(\sqrt{1+x^2}+1)} = \lim_{x \to 0} \frac{1+x^2-1}{x(\sqrt{1+x^2}+1)} = \lim_{x \to 0} \frac{x^2}{x(\sqrt{1+x^2}+1)} = \lim_{x \to 0} \frac{x}{\sqrt{1+x^2}+1} = \frac{0}{\sqrt{1}+1} = 0.

So, f(0)=tan1(0)=0f(0) = \tan^{-1}(0) = 0.

The simplified form f(x)=12tan1xf(x) = \frac{1}{2}\tan^{-1}x also gives f(0)=12tan1(0)=0f(0) = \frac{1}{2}\tan^{-1}(0) = 0. Thus, f(x)=12tan1xf(x) = \frac{1}{2}\tan^{-1}x is valid for all xx.

Step 3: Calculate the derivative f(x)f'(x).

Differentiate f(x)=12tan1xf(x) = \frac{1}{2}\tan^{-1}x with respect to xx:

f(x)=ddx(12tan1x)=1211+x2f'(x) = \frac{d}{dx}\left(\frac{1}{2}\tan^{-1}x\right) = \frac{1}{2} \cdot \frac{1}{1+x^2}

Step 4: Evaluate f(0)f'(0).

Substitute x=0x=0 into f(x)f'(x):

f(0)=1211+02=1211=12f'(0) = \frac{1}{2} \cdot \frac{1}{1+0^2} = \frac{1}{2} \cdot \frac{1}{1} = \frac{1}{2}