Solveeit Logo

Question

Question: If $f(x) = \sqrt{\frac{x - \sin x}{x + \cos^2 x}}$, then $\lim_{x\to\infty} f(x)$ is...

If f(x)=xsinxx+cos2xf(x) = \sqrt{\frac{x - \sin x}{x + \cos^2 x}}, then limxf(x)\lim_{x\to\infty} f(x) is

A

0

B

\infty

C

1

D

None of these

Answer

1

Explanation

Solution

To find the limit of f(x)=xsinxx+cos2xf(x) = \sqrt{\frac{x - \sin x}{x + \cos^2 x}} as xx approaches infinity, we can analyze the expression inside the square root.

We have:

limxxsinxx+cos2x\lim_{x\to\infty} \frac{x - \sin x}{x + \cos^2 x}

Divide both the numerator and the denominator by xx:

limx1sinxx1+cos2xx\lim_{x\to\infty} \frac{1 - \frac{\sin x}{x}}{1 + \frac{\cos^2 x}{x}}

Now, consider the limits of sinxx\frac{\sin x}{x} and cos2xx\frac{\cos^2 x}{x} as xx approaches infinity.

Since 1sinx1-1 \le \sin x \le 1, we have 1xsinxx1x-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}. As xx \to \infty, 1x0\frac{1}{x} \to 0, so by the Squeeze Theorem, limxsinxx=0\lim_{x\to\infty} \frac{\sin x}{x} = 0.

Similarly, since 0cos2x10 \le \cos^2 x \le 1, we have 0cos2xx1x0 \le \frac{\cos^2 x}{x} \le \frac{1}{x}. As xx \to \infty, 1x0\frac{1}{x} \to 0, so by the Squeeze Theorem, limxcos2xx=0\lim_{x\to\infty} \frac{\cos^2 x}{x} = 0.

Substituting these limits back into the expression:

limx101+0=11=1\lim_{x\to\infty} \frac{1 - 0}{1 + 0} = \frac{1}{1} = 1

Now, take the square root of the limit:

limxf(x)=1=1\lim_{x\to\infty} f(x) = \sqrt{1} = 1

Thus, the limit of f(x)f(x) as xx approaches infinity is 1.