Solveeit Logo

Question

Question: If f(x) = \(\sqrt{\frac{5}{2}}\) when x ≠ π/2 and f(π/2) = λ then f(x) will be a continuous function...

If f(x) = 52\sqrt{\frac{5}{2}} when x ≠ π/2 and f(π/2) = λ then f(x) will be a continuous function at x = π/2 when λ is –

A

1/8

B

¼

C

½

D

None

Answer

1/8

Explanation

Solution

Q f(x) is continuous at x = π/2

limxπ/2\lim _ { x \rightarrow \pi / 2 } 1sinx(π2x)2\frac { 1 - \sin \mathrm { x } } { ( \pi - 2 \mathrm { x } ) ^ { 2 } } = f(π/2)

applying D.L. limxπ/2\lim _ { x \rightarrow \pi / 2 } cosx2(π2x)(2)\frac { - \cos x } { 2 ( \pi - 2 x ) ( - 2 ) } = λ

again D.L = limxπ/2\lim _ { x \rightarrow \pi / 2 } sinx4.(2)\frac { \sin x } { - 4 . ( - 2 ) } = λ ⇒ 18\frac { 1 } { 8 } = λ