Solveeit Logo

Question

Question: If f(x) = sin<sup>–1</sup>\(\lim_{x \rightarrow 0}\left( \frac{\int_{0}^{x^{2}}{\sec^{2}tdt}}{x\sin ...

If f(x) = sin–1limx0(0x2sec2tdtxsinx)\lim_{x \rightarrow 0}\left( \frac{\int_{0}^{x^{2}}{\sec^{2}tdt}}{x\sin x} \right), then f(x) is differentiable on :

A

[–1, 1]

B

R – {–1, 1}

C

R – (–1, 1)

D

None of these

Answer

R – {–1, 1}

Explanation

Solution

f(x) = sin–1

= 1+x2(1+x2)24x2×2+2x24x2(1+x2)2\frac { 1 + x ^ { 2 } } { \sqrt { \left( 1 + x ^ { 2 } \right) ^ { 2 } - 4 x ^ { 2 } } } \times \frac { 2 + 2 x ^ { 2 } - 4 x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { 2 } }

not defined when (1 + x2)2 – 4x2 = 0

x = ± 1

Differential at R – {–1, 1}