Solveeit Logo

Question

Question: If $f(x) = \sin(\sqrt{[\lambda]}x)$ is a periodic function with period $\frac{\pi}{2}$, where $[\lam...

If f(x)=sin([λ]x)f(x) = \sin(\sqrt{[\lambda]}x) is a periodic function with period π2\frac{\pi}{2}, where [λ][\lambda] denotes the greatest integer less than or equal to λ\lambda, then:

A

λ[4,5)\lambda \in [4, 5)

B

λ[4,5]\lambda \in [4, 5]

C

λ[16,17)\lambda \in [16, 17)

D

λ[16,17]\lambda \in [16, 17]

Answer

λ[16,17)\lambda \in [16, 17)

Explanation

Solution

The period of the function f(x)=sin([λ]x)f(x) = \sin(\sqrt{[\lambda]}x) is given by T=2π[λ]T = \frac{2\pi}{\sqrt{[\lambda]}}. We are given that the period is π2\frac{\pi}{2}. Therefore, we have the equation:

2π[λ]=π2\frac{2\pi}{\sqrt{[\lambda]}} = \frac{\pi}{2}

Solving for [λ][\lambda]:

[λ]=2ππ2=4\sqrt{[\lambda]} = \frac{2\pi}{\frac{\pi}{2}} = 4

[λ]=42=16[\lambda] = 4^2 = 16

Since [λ]=16[\lambda] = 16, we have 16λ<1716 \le \lambda < 17. Thus, λ[16,17)\lambda \in [16, 17).