Solveeit Logo

Question

Question: If f(x) = sin(cosx) − x + tan(sinx) ∀ x ∈ (-∞, 0) then odd extension of f(x) in (0, ∞) is...

If f(x) = sin(cosx) − x + tan(sinx) ∀ x ∈ (-∞, 0) then odd extension of f(x) in (0, ∞) is

A

sin(cos x) + x + tan (sinx)

B

sin (cosx) + x − tan (sinx)

C

sin (cosx) − x + tan (sinx)

D

−x − sin (cosx) + tan (sinx)

Answer

−x − sin (cosx) + tan (sinx)

Explanation

Solution

Odd extension of f(x) in (0, ∞) can be obtained by replacing x by -x and multiplying throughout by -ve sign.