Solveeit Logo

Question

Question: If f(x) = sgn(sin²x - sinx - t) has exactly four points of discontinuity for x ∈ (0, nπ), n ∈ N, the...

If f(x) = sgn(sin²x - sinx - t) has exactly four points of discontinuity for x ∈ (0, nπ), n ∈ N, then

A

minimum value of n is 5

B

maximum value of n is 5

C

there are exactly two possible value of n

D

none of these

Answer

none of these

Explanation

Solution

The function f(x)=sgn(sin2xsinxt)f(x) = \text{sgn}(\sin^2x - \sin x - t) is discontinuous when the argument of the sgn function is zero. So, the points of discontinuity occur when sin2xsinxt=0\sin^2x - \sin x - t = 0. Let y=sinxy = \sin x. The equation is y2yt=0y^2 - y - t = 0. This is a quadratic equation in yy. Let its roots be y1,y2y_1, y_2. y=1±1+4t2y = \frac{1 \pm \sqrt{1+4t}}{2}. For real roots to exist, we must have 1+4t01+4t \ge 0, so t1/4t \ge -1/4.

Case 1: t=1/4t = -1/4. The equation is y2y+1/4=0y^2 - y + 1/4 = 0, which is (y1/2)2=0(y - 1/2)^2 = 0. The only root is y=1/2y = 1/2. We need to find the number of solutions for sinx=1/2\sin x = 1/2 in the interval x(0,nπ)x \in (0, n\pi). The values of xx in (0,π)(0, \pi) for which sinx=1/2\sin x = 1/2 are π/6\pi/6 and 5π/65\pi/6. In the interval (0,nπ)(0, n\pi), the graph of sinx\sin x consists of nn arches.

If nn is odd, n=2k+1n=2k+1, the intervals are (0,π),(π,2π),,(2kπ,(2k+1)π)(0, \pi), (\pi, 2\pi), \dots, (2k\pi, (2k+1)\pi). The intervals with positive sinx\sin x are (0,π),(2π,3π),,(2kπ,(2k+1)π)(0, \pi), (2\pi, 3\pi), \dots, (2k\pi, (2k+1)\pi). There are k+1k+1 such intervals. In each such interval, sinx=1/2\sin x = 1/2 has two solutions. The total number of solutions is 2(k+1)=2(n12+1)=n1+2=n+12(k+1) = 2(\frac{n-1}{2}+1) = n-1+2 = n+1.

If nn is even, n=2kn=2k, the intervals are (0,π),(π,2π),,((2k1)π,2kπ)(0, \pi), (\pi, 2\pi), \dots, ((2k-1)\pi, 2k\pi). The intervals with positive sinx\sin x are (0,π),(2π,3π),,((2k2)π,(2k1)π)(0, \pi), (2\pi, 3\pi), \dots, ((2k-2)\pi, (2k-1)\pi). There are kk such intervals. In each such interval, sinx=1/2\sin x = 1/2 has two solutions. The total number of solutions is 2k=n2k = n.

We are given that there are exactly four points of discontinuity.

If nn is odd, n+1=4    n=3n+1 = 4 \implies n=3. If nn is even, n=4n = 4.

So, if t=1/4t=-1/4, nn can be 3 or 4.

Case 2: t>1/4t > -1/4. There are two distinct roots y1=11+4t2y_1 = \frac{1 - \sqrt{1+4t}}{2} and y2=1+1+4t2y_2 = \frac{1 + \sqrt{1+4t}}{2}. We know y1<1/2y_1 < 1/2 and y2>1/2y_2 > 1/2. The points of discontinuity occur when sinx=y1\sin x = y_1 or sinx=y2\sin x = y_2. We need to count the number of solutions in x(0,nπ)x \in (0, n\pi) for which sinx\sin x takes these values, provided y1,y2y_1, y_2 are in the range of sinx\sin x for x(0,nπ)x \in (0, n\pi).

The range of sinx\sin x for x(0,nπ)x \in (0, n\pi) is (0,1](0, 1] if n=1n=1, and [1,1][-1, 1] if n2n \ge 2.

Subcase 2a: n=1n=1. x(0,π)x \in (0, \pi). sinx(0,1]\sin x \in (0, 1]. We need y1,y2(0,1]y_1, y_2 \in (0, 1].

y2=1+1+4t2y_2 = \frac{1 + \sqrt{1+4t}}{2}. y21    1+1+4t2    1+4t1y_2 \le 1 \implies 1 + \sqrt{1+4t} \le 2 \implies \sqrt{1+4t} \le 1. Since t>1/4t > -1/4, 1+4t>01+4t > 0. Squaring gives 1+4t1    4t0    t01+4t \le 1 \implies 4t \le 0 \implies t \le 0. So, 1/4<t0-1/4 < t \le 0.

If t=0t=0, y2y=0    y(y1)=0    y=0,1y^2-y=0 \implies y(y-1)=0 \implies y=0, 1. sinx=0\sin x = 0 has n1=0n-1=0 solution in (0,π)(0, \pi). sinx=1\sin x = 1 has 1 solution in (0,π)(0, \pi). Total 1 solution. Not 4.

If 1/4<t<0-1/4 < t < 0, y2<1y_2 < 1. y1=11+4t2y_1 = \frac{1 - \sqrt{1+4t}}{2}. Since 1/4<t<0-1/4 < t < 0, 0<1+4t<10 < 1+4t < 1, so 0<1+4t<10 < \sqrt{1+4t} < 1. y1=11+4t2(112,102)=(0,1/2)y_1 = \frac{1 - \sqrt{1+4t}}{2} \in (\frac{1-1}{2}, \frac{1-0}{2}) = (0, 1/2). y2=1+1+4t2(1+02,1+12)=(1/2,1)y_2 = \frac{1 + \sqrt{1+4t}}{2} \in (\frac{1+0}{2}, \frac{1+1}{2}) = (1/2, 1). Both y1,y2(0,1)y_1, y_2 \in (0, 1). For x(0,π)x \in (0, \pi), sinx=y1\sin x = y_1 has two solutions and sinx=y2\sin x = y_2 has two solutions. Total 2+2=42+2=4 solutions. So, if 1/4<t<0-1/4 < t < 0, n=1n=1 is a possible value.

Subcase 2b: n2n \ge 2. x(0,nπ)x \in (0, n\pi). sinx[1,1]\sin x \in [-1, 1]. We need y1,y2[1,1]y_1, y_2 \in [-1, 1].

y2=1+1+4t21    t0y_2 = \frac{1 + \sqrt{1+4t}}{2} \le 1 \implies t \le 0. y1=11+4t21    11+4t2    31+4ty_1 = \frac{1 - \sqrt{1+4t}}{2} \ge -1 \implies 1 - \sqrt{1+4t} \ge -2 \implies 3 \ge \sqrt{1+4t}. Since t>1/4t > -1/4, 1+4t>01+4t > 0. Squaring gives 91+4t    84t    t29 \ge 1+4t \implies 8 \ge 4t \implies t \le 2. So, for n2n \ge 2, we need 1/4<t2-1/4 < t \le 2.

Let's analyze the number of solutions for sinx=y0\sin x = y_0 in (0,nπ)(0, n\pi) for y0[1,1]y_0 \in [-1, 1]. If y0(1,0)(0,1)y_0 \in (-1, 0) \cup (0, 1), there are 2 solutions in each full period of 2π2\pi where sinx\sin x reaches that value. In (0,nπ)(0, n\pi), there are n/2\lfloor n/2 \rfloor full periods (0,2π),(2π,4π),(0, 2\pi), (2\pi, 4\pi), \dots. If nn is even, n=2kn=2k, the interval is (0,2kπ)(0, 2k\pi). sinx\sin x completes kk full cycles. If y0(1,0)(0,1)y_0 \in (-1, 0) \cup (0, 1), there are 2k=n2k = n solutions. If y0=1y_0 = 1, there are k=n/2k = n/2 solutions. If y0=1y_0 = -1, there are k1=n/21k-1 = n/2-1 solutions for k1k \ge 1. If y0=0y_0 = 0, there are n1n-1 solutions (π,2π,,(n1)π \pi, 2\pi, \dots, (n-1)\pi).

If nn is odd, n=2k+1n=2k+1, the interval is (0,(2k+1)π)(0, (2k+1)\pi). This is kk full cycles plus an interval of length π\pi. If y0(0,1)y_0 \in (0, 1), there are 2k2k solutions in (0,2kπ)(0, 2k\pi) and 2 solutions in (2kπ,(2k+1)π)(2k\pi, (2k+1)\pi) if y0<1y_0 < 1. Total 2k+2=n+12k+2 = n+1 solutions if y0(0,1)y_0 \in (0, 1). If y0=1y_0=1, k+1k+1 solutions. If y0(1,0)y_0 \in (-1, 0), there are 2k2k solutions in (0,2kπ)(0, 2k\pi). Total 2k=n12k = n-1 solutions. If y0=0y_0 = 0, there are n1n-1 solutions. If y0=1y_0 = -1, there are k=(n1)/2k = (n-1)/2 solutions.

Let's consider the ranges of y1,y2y_1, y_2 for 1/4<t2-1/4 < t \le 2. If 1/4<t<0-1/4 < t < 0, y1(0,1/2)y_1 \in (0, 1/2), y2(1/2,1)y_2 \in (1/2, 1). Both are in (0,1)(0, 1). If n2n \ge 2 is even (n=2kn=2k), number of solutions for sinx=y1\sin x = y_1 is 2k=n2k=n. Number of solutions for sinx=y2\sin x = y_2 is 2k=n2k=n. Total 2n2n. We need 2n=4    n=22n=4 \implies n=2. If n=2n=2, total solutions 2×2=42 \times 2 = 4. So n=2n=2 is possible if 1/4<t<0-1/4 < t < 0. If n2n \ge 2 is odd (n=2k+1n=2k+1), number of solutions for sinx=y1\sin x = y_1 is n+1n+1. Number of solutions for sinx=y2\sin x = y_2 is n+1n+1. Total 2(n+1)2(n+1). We need 2(n+1)=4    n+1=2    n=12(n+1)=4 \implies n+1=2 \implies n=1. But we assumed n2n \ge 2. No odd n2n \ge 2 is possible in this range of tt.

If t=0t=0, y=0,1y=0, 1. For n2n \ge 2. If nn is even (n=2kn=2k), sinx=0\sin x = 0 has n1n-1 solutions. sinx=1\sin x = 1 has n/2n/2 solutions. Total n1+n/2=3n/21n-1+n/2 = 3n/2 - 1. We need 3n/21=4    3n/2=5    n=10/33n/2 - 1 = 4 \implies 3n/2 = 5 \implies n=10/3. Not an integer. If nn is odd (n=2k+1n=2k+1), sinx=0\sin x = 0 has n1n-1 solutions. sinx=1\sin x = 1 has (n+1)/2(n+1)/2 solutions. Total n1+(n+1)/2=(2n2+n+1)/2=(3n1)/2n-1+(n+1)/2 = (2n-2+n+1)/2 = (3n-1)/2. We need (3n1)/2=4    3n1=8    3n=9    n=3(3n-1)/2 = 4 \implies 3n-1=8 \implies 3n=9 \implies n=3. So n=3n=3 is possible if t=0t=0.

If 0<t20 < t \le 2. y1=11+4t2y_1 = \frac{1 - \sqrt{1+4t}}{2}. 0<t2    1<1+4t9    1<1+4t30 < t \le 2 \implies 1 < 1+4t \le 9 \implies 1 < \sqrt{1+4t} \le 3. y1(132,112]=[1,0)y_1 \in (\frac{1-3}{2}, \frac{1-1}{2}] = [-1, 0). y2=1+1+4t2(1+12,1+32]=(1,2]y_2 = \frac{1 + \sqrt{1+4t}}{2} \in (\frac{1+1}{2}, \frac{1+3}{2}] = (1, 2]. Since the range of sinx\sin x is [1,1][-1, 1] for n2n \ge 2, we need y21y_2 \le 1. This requires t0t \le 0. So there are no solutions for y2y_2 in the range of sinx\sin x when 0<t20 < t \le 2 and n2n \ge 2, unless y2=1y_2=1, which requires t=0t=0.

Let's recheck the range of y1,y2y_1, y_2 for t>1/4t > -1/4. y2yt=0y^2 - y - t = 0. Roots are y1,y2y_1, y_2. Vertex at y=1/2y=1/2. g(y)=y2ytg(y) = y^2-y-t. g(1)=1(1)t=2tg(-1) = 1 - (-1) - t = 2-t. g(1)=11t=tg(1) = 1 - 1 - t = -t. We need roots in [1,1][-1, 1]. One root in [1,1][-1, 1] and the other outside. y1[1,1]y_1 \in [-1, 1] and y2[1,1]y_2 \notin [-1, 1] (since y21/2y_2 \ge 1/2, this means y2>1y_2 > 1). Requires g(1)<0g(1) < 0 and g(1)0g(-1) \ge 0. t<0    t>0-t < 0 \implies t > 0. 2t0    t22-t \ge 0 \implies t \le 2. So, if 0<t20 < t \le 2, one root y1[1,1]y_1 \in [-1, 1] and the other root y2>1y_2 > 1. y1=11+4t2y_1 = \frac{1 - \sqrt{1+4t}}{2}. For 0<t20 < t \le 2, 1<1+4t91 < 1+4t \le 9, 1<1+4t31 < \sqrt{1+4t} \le 3. y1[132,112)=[1,0)y_1 \in [\frac{1-3}{2}, \frac{1-1}{2}) = [-1, 0). So for 0<t20 < t \le 2, we have one root y1[1,0)y_1 \in [-1, 0) and the other root y2>1y_2 > 1. The only possible values for sinx\sin x are in [1,1][-1, 1], so only sinx=y1\sin x = y_1 can have solutions. y1[1,0)y_1 \in [-1, 0).

If n2n \ge 2 is even (n=2kn=2k), y1(1,0)y_1 \in (-1, 0). Number of solutions for sinx=y1\sin x = y_1 is 2k=n2k=n. If y1=1y_1=-1, number of solutions is k1=n/21k-1 = n/2-1 (for k1k \ge 1, i.e. n2n \ge 2). We need n=4n=4 or n/21=4    n/2=5    n=10n/2-1=4 \implies n/2=5 \implies n=10. So if nn is even, n=4n=4 or n=10n=10 are possible if y1(1,0]y_1 \in (-1, 0] and y2>1y_2 > 1. y1(1,0]y_1 \in (-1, 0] means 1<y10-1 < y_1 \le 0. y10    11+4t20    11+4t    11+4t    04t    t0y_1 \le 0 \implies \frac{1 - \sqrt{1+4t}}{2} \le 0 \implies 1 \le \sqrt{1+4t} \implies 1 \le 1+4t \implies 0 \le 4t \implies t \ge 0. y1>1    11+4t2>1    11+4t>2    3>1+4t    9>1+4t    8>4t    t<2y_1 > -1 \implies \frac{1 - \sqrt{1+4t}}{2} > -1 \implies 1 - \sqrt{1+4t} > -2 \implies 3 > \sqrt{1+4t} \implies 9 > 1+4t \implies 8 > 4t \implies t < 2. So for 0t<20 \le t < 2, y1(1,0]y_1 \in (-1, 0]. If t=0t=0, y1=0y_1=0. n1=4    n=5n-1=4 \implies n=5. But we assumed nn is even. If 0<t<20 < t < 2, y1(1,0)y_1 \in (-1, 0). Number of solutions is nn. We need n=4n=4. So n=4n=4 is possible if 0<t<20 < t < 2. If t=2t=2, y1=1y_1 = -1. Number of solutions is n/21n/2-1. We need n/21=4    n/2=5    n=10n/2-1=4 \implies n/2=5 \implies n=10. So n=10n=10 is possible if t=2t=2.

If n2n \ge 2 is odd (n=2k+1n=2k+1), y1[1,0)y_1 \in [-1, 0). If y1(1,0)y_1 \in (-1, 0), number of solutions is 2k=n12k = n-1. We need n1=4    n=5n-1=4 \implies n=5. So n=5n=5 is possible if 0<t<20 < t < 2. If y1=1y_1 = -1, number of solutions is k=(n1)/2k = (n-1)/2. We need (n1)/2=4    n1=8    n=9(n-1)/2 = 4 \implies n-1=8 \implies n=9. So n=9n=9 is possible if t=2t=2.

Both roots outside [1,1][-1, 1]. y1<1y_1 < -1 and y2>1y_2 > 1. y1<1    t>2y_1 < -1 \implies t > 2. y2>1    t>0y_2 > 1 \implies t > 0. So if t>2t > 2, y1<1y_1 < -1 and y2>1y_2 > 1. Neither root is in [1,1][-1, 1]. So there are no solutions for sinx=y1\sin x = y_1 or sinx=y2\sin x = y_2. Number of discontinuities is 0. Not 4.

Summary of possible values of nn: If t=1/4t=-1/4, n=3,4n=3, 4. If 1/4<t<0-1/4 < t < 0, n=1,2n=1, 2. If t=0t=0, n=3n=3. If 0<t<20 < t < 2, n=4,5n=4, 5. If t=2t=2, n=9,10n=9, 10.

The possible values of nn are 1,2,3,4,5,9,101, 2, 3, 4, 5, 9, 10. We are looking for statements about nNn \in N. Minimum value of nn is 1. The statement "minimum value of n is 5" is false. Maximum value of nn is 10. The statement "maximum value of n is 5" is false. There are exactly two possible values of nn. The possible values are {1,2,3,4,5,9,10}\{1, 2, 3, 4, 5, 9, 10\}, which has 7 values. The statement "there are exactly two possible value of n" is false. Therefore, none of the given statements are true.

The final answer is noneofthese\boxed{none of these}.