Solveeit Logo

Question

Question: If f(x) = log<sub>x</sub> (lnx) then f ′(x) at x = e is...

If f(x) = logx (lnx) then f ′(x) at x = e is

A

1/e

B

e

C

e1/e

D

None of these

Answer

1/e

Explanation

Solution

f(x) = logx(logex) = loge(logex)logex\frac{\log_{e}(\log_{e}x)}{\log_{e}x}

f ′(x) = (logex)(1logex.1x)1x.log(logx)(logex)2\frac{(\log_{e}x)\left( \frac{1}{\log_{e}x}.\frac{1}{x} \right) - \frac{1}{x}.\log(\log x)}{(\log_{e}x)^{2}}

⇒ f ′ (5) = 1log1e.(1)2\frac{1 - \log 1}{e.(1)^{2}}= 1/ e