Solveeit Logo

Question

Question: If \(f(x) = \log_{x}(\log x),\) then \(f^{'}(x)\) at \(x = e\) is...

If f(x)=logx(logx),f(x) = \log_{x}(\log x), then f(x)f^{'}(x) at x=ex = e is

A

e

B

1/e

C

1

D

None of these

Answer

1/e

Explanation

Solution

f(x)=logx(logx)=log(logx)logxf(x) = \log_{x}(\log x) = \frac{\log(\log x)}{\log x}f(x)=1x1xlog(logx)(logx)2f^{'}(x) = \frac{\frac{1}{x} - \frac{1}{x}\log(\log x)}{(\log x)^{2}}

f(e)=1e01=1ef^{'}(e) = \frac{\frac{1}{e} - 0}{1} = \frac{1}{e}