Question
Question: If \(f(x) = |\log x|,\) then for \(x \neq 1,f^{'}(x)\) equals...
If f(x)=∣logx∣, then for x=1,f′(x) equals
A
x1
B
∣x∣1
C
x−1
D
None of these
Answer
None of these
Explanation
Solution
$f(x) = |\log x| = \left{ \begin{matrix}
- \log x, & \text{if }0 < x < 1 \ \log x, & \text{if }x \geq 1 \end{matrix} \right.\ $
⇒ $f^{'}(x) = \left{ \begin{matrix}
- \frac{1}{x}, & \text{if }0 < x < 1 \ \frac{1}{x}, & \text{if }x > 1 \end{matrix} \right.\ $.
Clearly f′(1−)=−1 and f′(1+)=1,
∴ f′(x) does not exist at x=1