Solveeit Logo

Question

Question: If f(x) = \(\lim_{n \rightarrow \infty}\)n (x<sup>1/n</sup>–1), x \> 0, then f(xy) is:...

If f(x) = limn\lim_{n \rightarrow \infty}n (x1/n–1), x > 0, then f(xy) is:

A

f(x) f(y)

B

f(x) + f(y)

C

f(x) – f(y)

D

f(x)f(y)\frac{f(x)}{f(y)}

Answer

f(x) + f(y)

Explanation

Solution

f(x) = x1/n11/n\frac{x^{1/n} - 1}{1/n} Ž f(x) = lnx