Question
Question: If f(x) = \(\lim_{n \rightarrow \infty}\)n (x<sup>1/n</sup>–1), x \> 0, then f(xy) is:...
If f(x) = limn→∞n (x1/n–1), x > 0, then f(xy) is:
A
f(x) f(y)
B
f(x) + f(y)
C
f(x) – f(y)
D
f(y)f(x)
Answer
f(x) + f(y)
Explanation
Solution
f(x) = 1/nx1/n−1 Ž f(x) = lnx