Question
Question: If f(x) = \(\lim_{n \rightarrow \infty}\) [2x + 4x<sup>3</sup> + ………. + 2nx<sup>2n–1</sup>], (0 \< x...
If f(x) = limn→∞ [2x + 4x3 + ………. + 2nx2n–1], (0 < x < 1) then ∫f(x)dxis equal to –
A
– (1–x2)
B
1–x21
C
x2–11
D
1–x21
Answer
1–x21
Explanation
Solution
f(x) = limn→∞2 [x+ 2x3 + ……. + nx2n–1], 0 < x < 1
= limn→∞ 2x [1 + 2x2 + ……… + nx2n–2]
= 2x
(Q given progression is A.G.P.)
f(x) = (1–x2)22x
\ = ∫(1–x2)22x dx
1 – x2 = t
2xdx = – dt
= – ∫t2dt
= t1 + c
= + c