Solveeit Logo

Question

Question: If f(x) = \(\lim_{n \rightarrow \infty}\) [2x + 4x<sup>3</sup> + ………. + 2nx<sup>2n–1</sup>], (0 \< x...

If f(x) = limn\lim_{n \rightarrow \infty} [2x + 4x3 + ………. + 2nx2n–1], (0 < x < 1) then f(x)dx\int_{}^{}{f(x)dx}is equal to –

A

(1x2)\sqrt{(1–x^{2})}

B

11x2\frac{1}{\sqrt{1–x^{2}}}

C

1x21\frac{1}{x^{2}–1}

D

11x2\frac{1}{1–x^{2}}

Answer

11x2\frac{1}{1–x^{2}}

Explanation

Solution

f(x) = limn\lim_{n \rightarrow \infty}2 [x+ 2x3 + ……. + nx2n–1], 0 < x < 1

= limn\lim _ { n \rightarrow \infty } 2x [1 + 2x2 + ……… + nx2n–2]

= 2x

(Q given progression is A.G.P.)

f(x) = 2x(1x2)2\frac{2x}{(1–x^{2})^{2}}

\ = 2x(1x2)2\int_{}^{}\frac{2x}{(1–x^{2})^{2}} dx

1 – x2 = t

2xdx = – dt

= – dtt2\int \frac { \mathrm { dt } } { \mathrm { t } ^ { 2 } }

= 1t\frac{1}{t} + c

= + c