Solveeit Logo

Question

Question: If f(x) = \(\left( \frac{x^{a}}{x^{b}} \right)^{a + b}\). \(\left( \frac{x^{b}}{x^{c}} \right)^{b + ...

If f(x) = (xaxb)a+b\left( \frac{x^{a}}{x^{b}} \right)^{a + b}. (xbxc)b+c\left( \frac{x^{b}}{x^{c}} \right)^{b + c}.(xcxa)c+a\left( \frac{x^{c}}{x^{a}} \right)^{c + a}, then f´(x) is equal to

A

1

B

0

C

xa+b+c

D

None of these

Answer

0

Explanation

Solution

**Sol. **f(x) – (x)a2b2(x)^{a^{2} - b^{2}}× (x)b2c2(x)^{b^{2} - c^{2}}× (x)c2a2(x)^{c^{2} - a^{2}}

f(x) = (x)a2b2+b2c2+c2a2(x)^{a^{2} - b^{2} + b^{2} - c^{2} + c^{2} - a^{2}}= (x)0 = 1

f´(x) = 0