Solveeit Logo

Question

Question: If f(x) = \(\left( \frac{x - 2}{2} \right) - \frac{\pi}{6}\) is continuous at x = 3, then λ =...

If f(x) = (x22)π6\left( \frac{x - 2}{2} \right) - \frac{\pi}{6} is continuous at x = 3, then λ =

A

4

B

3

C

2

D

1

Answer

1

Explanation

Solution

L.H.L. at x = 3, limx3f(x)=limx3(x+λ)\lim _ { x \rightarrow 3 ^ { - } } f ( x ) = \lim _ { x \rightarrow 3 ^ { - } } ( x + \lambda )

= limh0(3h+λ)\lim _ { h \rightarrow 0 } ( 3 - h + \lambda )=3+λ3 + \lambda …..(i)

R.H.L. at x = 3, limx3+f(x)=limx3+(3x5)\lim _ { x \rightarrow 3 ^ { + } } f ( x ) = \lim _ { x \rightarrow 3 ^ { + } } ( 3 x - 5 )

= limh0{3(3+h)5}\lim _ { h \rightarrow 0 } \{ 3 ( 3 + h ) - 5 \} = 4 …..(ii)

Value of function f(3)=4f ( 3 ) = 4 …..(iii)

For continuity at x = 3

Limit of function = value of function 3 + λ = 4 ⇒ λ = 1.