Solveeit Logo

Question

Question: If \(f(x) = \left| \begin{matrix} x & \cos x & e^{x^{2}} \\ \sin x & x^{2} & \sec x \\ \tan x & 1 & ...

If f(x)=xcosxex2sinxx2secxtanx12f(x) = \left| \begin{matrix} x & \cos x & e^{x^{2}} \\ \sin x & x^{2} & \sec x \\ \tan x & 1 & 2 \end{matrix} \right| then the value of

π/2π/2f(x)dx\int_{- \pi/2}^{\pi/2}{f(x)dx}is equal to

A

5

B

3

C

1

D

0

Answer

0

Explanation

Solution

f(x)=f( - x) = $\left| \begin{matrix}

  • x & \cos x & e^{x^{2}} \
  • \sin x & x^{2} & \sec x \
  • \tan x & 1 & 2 \end{matrix} \right| = - f(x)$

_π/2π/2f(x)dx=0\int_{\_\pi/2}^{\pi/2}{f(x)}dx = 0 [f(x)isoddfunction]\left\lbrack \because f(x)isoddfunction \right\rbrack