Solveeit Logo

Question

Question: If f(x) =\(\left| \begin{matrix} \sin x + \sin 2x + \sin 3x & \sin 2x & \sin 3x \\ 3 + 4\sin x & 3 &...

If f(x) =sinx+sin2x+sin3xsin2xsin3x3+4sinx34sinx1+sinxsinx1\left| \begin{matrix} \sin x + \sin 2x + \sin 3x & \sin 2x & \sin 3x \\ 3 + 4\sin x & 3 & 4\sin x \\ 1 + \sin x & \sin x & 1 \end{matrix} \right|, then the

value of 0π/2f(x)dx\int_{0}^{\pi/2}{f(x)dx} is -

A

3

B

23\frac{2}{3}

C

13\frac{1}{3}

D

0

Answer

13\frac{1}{3}

Explanation

Solution

C2 ® C2 + C3

f(x) = sinx+sin2x+sin3xsin2x+sin3xsin3x3+4sinx3+4sinx4sinx1+sinxsinx+11\left| \begin{matrix} \sin x + \sin 2x + \sin 3x & \sin 2x + \sin 3x & \sin 3x \\ 3 + 4\sin x & 3 + 4\sin x & 4\sin x \\ 1 + \sin x & \sin x + 1 & 1 \end{matrix} \right|

C1 ® C1 – C2

f(x) = sinxsin2x+sin3xsin3x03+4sinx4sinx01+sinx1\left| \begin{matrix} \sin x & \sin 2x + \sin 3x & \sin 3x \\ 0 & 3 + 4\sin x & 4\sin x \\ 0 & 1 + \sin x & 1 \end{matrix} \right|

f(x) = sin x (3 – 4 sin2x) = 3sin x – 4sin3x f(x)

= sin 3x

\ 0π/2sin3xdx\int_{0}^{\pi/2}{\sin 3xdx} = – [cos3x/3]0π/2\lbrack\cos 3x/3\rbrack_{0}^{\pi/2} = 1/3