Solveeit Logo

Question

Question: If .\(f(x) = \left| \begin{matrix} \sin x & \cos x & \tan x \\ x^{3} & x^{2} & x \\ 2x & 1 & 1 \end{...

If .f(x)=sinxcosxtanxx3x2x2x11f(x) = \left| \begin{matrix} \sin x & \cos x & \tan x \\ x^{3} & x^{2} & x \\ 2x & 1 & 1 \end{matrix} \right|, then limx0f(x)x2\lim_{x \rightarrow 0}\frac{f(x)}{x^{2}} is

A

3

B

–1

C

0

D

1

Answer

1

Explanation

Solution

f(x)=x(x1)sinx(x32x2)cosxx3tanxf(x) = x(x - 1)\sin x - (x^{3} - 2x^{2})\cos x - x^{3}\tan x

=x2sinxx3cosxx3tanx+2x2cosxxsinx= x^{2}\sin x - x^{3}\cos x - x^{3}\tan x + 2x^{2}\cos x - x\sin xHence, limx0f(x)x2=limx0(sinxxcosxxtanx+2cosx sinxx) =000+21=1\lim_{x \rightarrow 0}\frac{f(x)}{x^{2}} = \lim_{x \rightarrow 0}\left( \sin x - x\cos x - x\tan x + 2\cos x - \left. \ \frac{\sin x}{x} \right) \right.\ = 0 - 0 - 0 + 2 - 1 = 1.