Solveeit Logo

Question

Question: If f(x) = \(\left\{ \begin{matrix} \lbrack x\rbrack + \sqrt{\{ x\}}, & x < 1 \\ \frac{1}{\lbrack x\r...

If f(x) = {[x]+{x},x<11[x]+{x}2,x1 \left\{ \begin{matrix} \lbrack x\rbrack + \sqrt{\{ x\}}, & x < 1 \\ \frac{1}{\lbrack x\rbrack + \{ x\}^{2}}, & x \geq 1 \end{matrix} \right.\

[·] denotes greatest integer function.

{} denotes fractional part function. Then

A

f(x) is continuous at x = 1

B

f(x) is not continuous at x = 1

C

limx1\lim_{x \rightarrow 1}f(x) does not exist

D

f(x) is differentiable at x = 1

Answer

f(x) is continuous at x = 1

Explanation

Solution

R.H.L. limh0\lim_{h \rightarrow 0} 1[1+h]+{1+h}2\frac{1}{\lbrack 1 + h\rbrack + \{ 1 + h\}^{2}} = 11+h2\frac{1}{1 + h^{2}} = + 1

f(1) = 11+0\frac{1}{1 + 0} = + 1

L.H.L. limh0\lim_{h \rightarrow 0} [1 – h] + {1h}\sqrt{\{ 1 - h\}}

= 0 + 1 = + 1

f(x) is continuous at x = 1