Solveeit Logo

Question

Question: If f(x) = \(\left\{ \begin{matrix} \frac{\lbrack x\rbrack^{2} + \sin\lbrack x\rbrack}{\lbrack x\rbra...

If f(x) = {[x]2+sin[x][x]for[x]00for[x]=0 \left\{ \begin{matrix} \frac{\lbrack x\rbrack^{2} + \sin\lbrack x\rbrack}{\lbrack x\rbrack} & for\lbrack x\rbrack \neq 0 \\ 0 & for\lbrack x\rbrack = 0 \end{matrix} \right.\

where [x] denotes the greatest integer less than or equal to x, then limx0\lim_{x \rightarrow 0} f(x) equals:

A

1

B

0

C

–1

D

None of these

Answer

None of these

Explanation

Solution

As x ® 0 – (i.e., approaches 0 from the left), [x] = –1,

\limx0\lim_{x \rightarrow 0^{-}}f(x) = limx0\lim _ { x \rightarrow 0 ^ { - } } 1+sin(1)1\frac{1 + \sin( - 1)}{- 1}= –1 + sin 1

whereas, if x ® 0+ we get [x] = 0,

\ f(x) = 0 Ž limx0+\lim_{x \rightarrow 0^{+}}f(x) = 0

Thus, limx0\lim_{x \rightarrow 0}f(x) does not exist.