Question
Question: If f(x) = \(\left\{ \begin{matrix} \frac{\lbrack x\rbrack^{2} + \sin\lbrack x\rbrack}{\lbrack x\rbra...
If f(x) = {[x][x]2+sin[x]0for[x]=0for[x]=0
where [x] denotes the greatest integer less than or equal to x, then limx→0 f(x) equals:
A
1
B
0
C
–1
D
None of these
Answer
None of these
Explanation
Solution
As x ® 0 – (i.e., approaches 0 from the left), [x] = –1,
\limx→0−f(x) = limx→0− −11+sin(−1)= –1 + sin 1
whereas, if x ® 0+ we get [x] = 0,
\ f(x) = 0 Ž limx→0+f(x) = 0
Thus, limx→0f(x) does not exist.