Question
Question: If \(f(x) = \left\{ \begin{matrix} e^{\cos x}.\sin x,|x| \leq 2 \\ 2,\text{otherwise} \end{matrix} \...
If f(x)={ecosx.sinx,∣x∣≤22,otherwise , then ∫−23f(x)dx=
0
1
2
3
2
Solution
∣x∣≤2⇒−2≤x≤2 and f(x)=ecosxsinx is an odd function.
∴ I=∫−23f(x)dx=∫−22f(x)dx+∫23f(x)dx
⇒ I=0+∫232dx=[2x]23=2 [∵∫−aaf(x)=0 if f(x) is odd and in (2, 3) f(x) is 2]
(4) ∫0af(x)dx=∫0af(a−x)dx : This property can be used only when lower limit is zero. It is generally used for those complicated integrals whose denominators are unchanged when x is replaced by (a – x).
Following integrals can be obtained with the help of above property.
(i) ∫0π⥂/⥂2sinnx+cosnxsinnxdx=∫0π/2cosnx+sinnxcosnxdx=4π
(ii) ∫0π/21+tannxtannxdx=∫0π/21+cotnxcotnxdx=4π
(iii) ∫0π/21+tannx1dx=∫0π/21+cotnx1dx=4π
(iv) ∫0π/2secnx+cos⥂ecnxsecnxdx=∫0π/2cos⥂ecnx+secnxcos⥂ecnxdx=4π
(v) ∫0π/2f(sin2x)sinxdx=∫0π/2f(sin2x)cosxdx
(vi) ∫0π/2f(sinx)dx=∫0π/2f(cosx)dx
(vii) ∫0π/2f(tanx)dx=∫0π/2f(cotx)dx
(viii) ∫01f(logx)dx=∫01f[log(1−x)]dx
(ix)∫0π/2logtanxdx=∫0π/2logcotxdx
(x) ∫0π/4log(1+tanx)dx=8πlog2
(xi) ∫0π/2logsinxdx=∫0π/2logcosxdx=2−πlog2=2πlog21
(xii) ∫0π/2sinx+cosxasinx+bcosxdx=∫0π/2secx+cos⥂ecxasecx+bcos⥂ecxdx=∫0π/2tanx+cotxatanx+bcotxdx=4π(a+b)