Solveeit Logo

Question

Question: If \(f(x) = \left\{ \begin{matrix} e^{\cos x}.\sin x,|x| \leq 2 \\ 2,\text{otherwise} \end{matrix} \...

If f(x)={ecosx.sinx,x22,otherwise f(x) = \left\{ \begin{matrix} e^{\cos x}.\sin x,|x| \leq 2 \\ 2,\text{otherwise} \end{matrix} \right.\ , then 23f(x)dx=\int_{- 2}^{3}{f(x)dx} =

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

x22x2|x| \leq 2 \Rightarrow - 2 \leq x \leq 2 and f(x)=ecosxsinxf(x) = e^{\cos x}\sin x is an odd function.

I=23f(x)dx=22f(x)dx+23f(x)dxI = \int_{- 2}^{3}{f(x)dx} = \int_{- 2}^{2}{f(x)dx} + \int_{2}^{3}{f(x)dx}

I=0+232dx=[2x]23=2I = 0 + \int_{2}^{3}{2dx} = \lbrack 2x\rbrack_{2}^{3} = 2 [aaf(x)=0\because\int_{- a}^{a}{f(x) = 0} if f(x) is odd and in (2, 3) f(x) is 2]

(4) 0af(x)dx=0af(ax)dx\int_{0}^{a}{f(x)dx = \int_{0}^{a}{f(a - x)dx}} : This property can be used only when lower limit is zero. It is generally used for those complicated integrals whose denominators are unchanged when x is replaced by (a – x).

Following integrals can be obtained with the help of above property.

(i) 0π/2sinnxsinnx+cosnxdx=0π/2cosnxcosnx+sinnxdx=π4\int_{0}^{\pi ⥂ / ⥂ 2}\frac{\sin^{n}x}{\sin^{n}x + \cos^{n}x}dx = \int_{0}^{\pi/2}{\frac{\cos^{n}x}{\cos^{n}x + \sin^{n}x}dx = \frac{\pi}{4}}

(ii) 0π/2tannx1+tannxdx=0π/2cotnx1+cotnxdx=π4\int_{0}^{\pi/2}{\frac{\tan^{n}x}{1 + \tan^{n}x}dx = \int_{0}^{\pi/2}{\frac{\cot^{n}x}{1 + \cot^{n}x}dx = \frac{\pi}{4}}}

(iii) 0π/211+tannxdx=0π/211+cotnxdx=π4\int_{0}^{\pi/2}{\frac{1}{1 + \tan^{n}x}dx = \int_{0}^{\pi/2}\frac{1}{1 + \cot^{n}x}dx = \frac{\pi}{4}}

(iv) 0π/2secnxsecnx+cosecnxdx=0π/2cosecnxcosecnx+secnxdx=π4\int_{0}^{\pi/2}{\frac{\sec^{n}x}{\sec^{n}x + \cos ⥂ ec^{n}x}dx =}\int_{0}^{\pi/2}{}\frac{\cos ⥂ ec^{n}x}{\cos ⥂ ec^{n}x + \sec^{n}x}dx = \frac{\pi}{4}

(v) 0π/2f(sin2x)sinxdx=0π/2f(sin2x)cosxdx\int_{0}^{\pi/2}{f(\sin 2x)\sin xdx =}\int_{0}^{\pi/2}{f(\sin 2x)\cos xdx}

(vi) 0π/2f(sinx)dx=0π/2f(cosx)dx\int_{0}^{\pi/2}{f(\sin x)dx = \int_{0}^{\pi/2}{f(\cos x)dx}}

(vii) 0π/2f(tanx)dx=0π/2f(cotx)dx\int_{0}^{\pi/2}{f(\tan x)dx = \int_{0}^{\pi/2}{f(\cot x)dx}}

(viii) 01f(logx)dx=01f[log(1x)]dx\int_{0}^{1}{f(\log x)dx = \int_{0}^{1}{f\lbrack\log(1 - x)\rbrack dx}}

(ix)0π/2logtanxdx=0π/2logcotxdx\int_{0}^{\pi/2}{{logtan}xdx =}\int_{0}^{\pi/2}{{logcot}xdx}

(x) 0π/4log(1+tanx)dx=π8log2\int_{0}^{\pi/4}{\log(1 + \tan x)dx = \frac{\pi}{8}\log 2}

(xi) 0π/2logsinxdx=0π/2logcosxdx=π2log2=π2log12\int_{0}^{\pi/2}{{logsin}xdx} = \int_{0}^{\pi/2}{{logcos}xdx} = \frac{- \pi}{2}\log 2 = \frac{\pi}{2}\log\frac{1}{2}

(xii) 0π/2asinx+bcosxsinx+cosxdx=0π/2asecx+bcosecxsecx+cosecxdx\int_{0}^{\pi/2}{}\frac{a\sin x + b\cos x}{\sin x + \cos x}dx = \int_{0}^{\pi/2}{}\frac{a\sec x + b\cos ⥂ ecx}{\sec x + \cos ⥂ ecx}dx =0π/2atanx+bcotxtanx+cotxdx=π4(a+b)= \int_{0}^{\pi/2}{}\frac{a\tan x + b\cot x}{\tan x + \cot x}dx = \frac{\pi}{4}(a + b)